\\ \title{
worla\\ \title{
worla \\ NOVEMBER 1979 50p
}

Electrostatic headphones

Measuring sound power

Fectronic SDeecomet hi

wireless

wiveless a wireless world

ELECTRONICS /TELEVISION / RADIO / AUDIO
NOVEMBER 1979 Vol 85 No 1527

Front cover shows Fleming's first patented November 1904 (see article in this issed Photo: courtesy of The Phe Phato: courtesy Marconi Company.

in our next issue Parallel-tracking pickup arm. Constructional dosign using optical servo is much
cheaper than commercia models.
Control via the mains. Using signals for remote control o signais for remote con
domestic appliances.

Why your speaker is full of foam. Explaining the acou tics of domestic loudspeake systoms.

45 Trickle, trickle little chip

46 Europe responds to lepanese video
by Geoffrey Shorter and D. Fishman
51 Electrostatic headphones by N. Pollock

56 World of amateur radio
WARC 79 News of the month New Braille processor developed

63 Slow counters
by A. D. Ryder

66 Lord Louis Mountbatten
69 Two-metre s.s.b. and f.m. transceiver - 2
by G. R. B. Thornley
74 Electronic speedometer
by A. J. Ewins
79 Letters to the editor
What's wrong with teletext
More on the nature of the electron
82 Novatexts: unijunction astables
by P. Williams
85 Hall-effect magnetic field detection by D. Wedlake
89 Circuit ideas
Radio clock 12-hour display simple pulse splitte
L.e.d. display for 8080

92 Measuring sound power
by James Moir
94 How I invented the thermionic diode
by J. A. Fleming
99 Soundfield microphone - 2 by K. Farrar

104 New products

106 Sidebands by Mixer

Ohms Law Rules O.K.

It is fashionable in avant-garde hi-fi circles to abandon the precepts of science and to endow equipment with personality.

Fortunately the electrons which whiz through the circuitry of your equipment are not conversant with fashion : if they were they'd conversant with fashion : if they were they'd
probably die laughing and we would have probably die laughing and we would have H.I.D. (hysteria induced distortion) to ad
T.I.D., T.P.D., B.L.T., and sundry other T.I.D., T.P.D., B.L.T., and sundry other
initial ailments which supposedly afflict your initial ailments which supposedly afflict your equipment. As it is, they behave predictably whatever others might wish to believe.
At Quad we apply the rules, rigorously, which largely explains why our products withstand the test of time.
For further details on the full range of QUAD products write to

The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB
Telephone: (0480) 52561

QUAD 卷

for the closest approach to the original sound

DON'T GAMBLE WITH PERFORMANCE BUY
 LEVELL VOLTMETERS

A.C. MICROVOLTMETERS

VOLTAGE \&
dB RANGES
$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V}$ fsd.
Acc. $\pm 1 \% \pm 1 \%$ fsd $\pm 1 \mu \mathrm{Vat} 1 \mathrm{kHz}$.

RESPONSE $\pm 3 \mathrm{BB}$ from 1 Hz to 3 MHz,
 HF cut 100 KHz . 10 KHz cor 350 Hz ,

INPUT IMPEDANCE
Above $50 \mathrm{mV}: 10 \mathrm{M} \Omega<20$ pF.
On 50 HV to $50 \mathrm{mV}:>.5 \mathrm{M} \Omega<50$ pf.
AMPLIFIER OUTPUT
$\underset{\text { TM3 }}{\text { Ty }}$ £ $£ 120$

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES	
H.F. RESPONSE	$\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz . $\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz .
L.F. RANGES	As TM3.
AMPLIFIER OUTPUT	Square wave at 20 Hz on H.F. with amplitude proportional to square of input As TM3 on L.F.
${ }_{\text {TM6A }}^{\text {type }}$ ¢ $£ 185$	
D.C. MICROVOLTMETERS	
voltage ranges	$\begin{aligned} & 30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V} \ldots 300 \mathrm{~V} \\ & \mathrm{Acc} \pm 1 \% \pm 2 \% \mathrm{fsd} \pm 1 \mu \mathrm{~V} . \mathrm{CZ} \text { scale. } \end{aligned}$
CURRENT RANGES	30pA, 100pA, 300pA ...300mA Acc. $\pm 2 \% \pm 2 \%$ fsd $\pm 2 \mathrm{pA}$. CZ scale.
LOG. RANGE	(${ }^{ \pm} 5 \mathrm{~V}^{\text {at } \pm 10 \% \mathrm{fsd}, \pm 5 \mathrm{mVat} \pm 50 \% \mathrm{fsd},}$
RECORDER OUTPUT	$\pm 1 \mathrm{Vat}$ fsd into $>1 \mathrm{k} \Omega$.
${ }_{\text {TM10 }}^{\text {type }}$ ($£ \mathbf{£ 9 9}$	

Fully detailed specification sheets are available on request for our complete range of portable instruments. Prices are ex-works,
carriage, packing and VAT extra. Optional extras are leather cases and power units. carriage, packing and VAT extra. Optional extras are leather cases and power units.

Our main competitor!

 sale for a bench power supply is your old friend alongside. There are thousands of them still working perfectly after more than 10 years in service.

Around $40,000 \mathrm{~L}$ series bench power supplies have been sold and the latest units are still uncompromising in performance and reliability. They provide constant voltage or constant current, feature large recessed meters, overload and shortcircuit protection, coarse and fine adjustment controls, a separate output switch and LED indicators for mains on and current limit.

Digital Multimeter Model 2010A Kit

Only $£ 49.95$ + VAT BRIEF SPECIFICATIONS:

5 + VAT
 Autozero, autoopolarity, overrange indication.
Laser trimmed Laser trimmen resisistot netwark.

 Fuse protecteded on orms and mA ranges.
 Display: $0.36^{\prime \prime}(9 \mathrm{~mm})$ Digits reading to to $\pm 1999{ }^{2}$

Digital Frequency Counter Model 7600 Kit

TCXO Time Base
Only $£ 69.95$ + VAT
BRIEF SPECIFICATIONS:

- Frequency Range: Switch selectable, 10 Hz to 60 MHz ,
10 MHz to 600 MHz guaranteed (10 MHz to 700 MHz .

 $40^{\circ} \mathrm{C}$ typical). Resolution: $1 \mathrm{~Hz} Z^{*}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$. Gate
Time: Switch Selectable, $100 \mathrm{msec}, 1 \mathrm{sec} \cdot$ Display:
 placement - Power Requirement; $7.5-15 \mathrm{VAC} / \mathrm{VDC} \in<2$
$(* 1 \mathrm{~Hz}$ Resolution with switch is an optional accessory.) 250 mA .

Only £69.95. + VAT
4 Digits. $1 \mathrm{PF}-9999 \mathrm{~F}$
Quartz crystal time
Quartz crystal time base for exact
capacitance measurements
capacitanc
4 ranges:
Accuracy:
Accuracy: $1 \mathrm{pFF}, 2 \mathrm{pF} \pm 1 \%$ of reading
$\pm /$ count
$\pm 1 \mathrm{~F}+1.5 \%$ of reading
± 1 count
± 1 count
$4 / \mu \mathrm{F} \pm 2 \%$ of reading
+1 count
Time base: $5,579 \mathrm{MHz} \pm 0.05 \%$ accuracy Operating temp. range $+5^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ Power requirements; 6 to $12 \mathrm{VDC}, 250 \mathrm{~mA}$

Digital Clock-Thermometer Model DTU 101

 Fully Assembled \& Tested

Only £29.95 + VAT
\&2.00 P8P
For internal and external temperature measurements and normal time clock,
with alarm capabity. Digital thermometer: ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to
$+90^{\circ} \mathrm{C}$. $)$ Digital clock with hrs., min., and sec. Alarm clock: 24 hour time readout.
Stop watch function up to 59 min. Stop watch function up to 59 min. Complete with case all parts and instruction manual (Optional: Automatic alternating parts for
alternating readout of time and alternating readout
temperature 5.55 .)

100 in 1
Universal Experimenters Kit.
 Only £14.95. + VAT
Electronics Experimenters kit with 100
different projects. Contains latest parts different projects. Contains latest parts
such as solar celis, ICs, transistors, such as solar cells, 1 ICs, transistors,
photocells, etc. Make music, itre alarm
teleophone amplitier, the telephone, amplifier, thermuc, tire alarm,
solar and light experiments. Complete
manual included.

Order now! Write to
Timwood Ltd
14 Albert Street, Cowes,
Isle of Wight, England Telex 86892
Send payment with your order

WIRELESS WORLD, NOVEMBER 1979

S100-the British way

The Vero S100 Sub Rack is a 19 " rack mountable development kit, complete th its own power supply and backplane evaluation of microprocessor based systems to the S100 format. The power supply provides three voltage levels $+8 \mathrm{~V},+18 \mathrm{~V}$ and -18 V . The Sub Rack has its own cooling fan providing airflow across the boards and the power supply. A full range of allied items to enable a complete system to be constructed are available.

VERO ELECTRONICS LTD RETAIL DEPT Industrial Estate, Chandler's Ford, Hampshire 505 3Z

WATTS \& RMS

Some instruments claim true RMS but are AC coupled, so that a composite input cannot be measured without calculation
not so the WM80!
For true RMS or Power with ‘difficult’ waveforms the WM80 AC/DC Test Set is a new instrument giving direct readings. Measurevalues are given for:

Voltages in the range 30 mV to 500 V Current in the range 1 mA to 15 A Other direct readings are obtained for:-

Power in the range 3 mW to 7.5 KW Frequency in the range 10 Hz to 10 KHz . Indirect determinations can be made of

Power factors
Crest factors
The WM80, at a price of less than $£ 200$, is the latest product from WPA Ltd., a company well known in the Science Education field schools and universities for over a decade.

Walden precision apparatus Lte

Constant ourrent and
voltage modes over three
for a wide variety of laboratory
Continuousty variable but highly stable outputs combine with proven reliable circuit design to provide trouble-free operation into any type of load. Outputs are whily lioaing. Either terminal may b grounded
ation - the units may be series connected mode - is an important feature. Both single and twin units are compact in design, occupying minimum valuable voltage and current, set by multi-furn or concentric moving coil meters.
Available ex-stock.
Send for price breaks and full specifications.

50010

England Coutant Electronics Limited, Traftord Road Reading RG1
Telex 847519 .
France $\begin{aligned} & \text { Coutant S.A., } 14-16 \text { nue Gabriel, Peri- } \\ & 92120 \text { Montrouge. Tel. }(01031) \text { (} 656 \text {-05-15. }\end{aligned}$ 92120 Montrouge. Tel. (010331) 656-05-15.

Coutant also operate in all other European countries.
wW - o22 for further details

wW - 026 FOR FURTHER DETAILS

Carston Electronics

Oscilloscopes
TEKTRONIX 465
DC-100MHz Dual Trace 5 mV - $5 \mathrm{~V} / \mathrm{Div} 4 \mathrm{MHz}$
$0.05 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed T/B XY DC $\mathbf{f 1 2 0 0}$

TEKTRONIX 475A
DC-250MHz Dual Trace $5 \mathrm{mV} /-5 \mathrm{~V} /$ Div 3 MHz $0.01 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed T/B XY DC $\quad \mathbf{£ 1 9 5 0}$

THESEIMSTRUMENTS SOLD WIH ONE YEARFULL GUAVMMEE
Additions to our
Stock -
Amplifiers
MICRO MOVEMENTS
 Counter Timers systems
HEWLTT PACKARD
 Time intera// Period/Ratio
Distortion Systems
RADFOR Distortion Systems
RADFRD
RASO DMS2 10Hz-100KHz meter
LOO2 10HzZ 100 HHz 2silitator
Modulation Meters Modulation Meters
 Oscilloscopes
DYNAMC
7210 DC. $15 M H 2$

\qquad

 Recorders
HEWLTT PACKARD

 M1330 10 Channel U.V.V.V. $5.1 .0000 \mathrm{~mm} / \mathrm{sec}$

 oltmeters Digital
FARNELL
DM1318 1999 FSD AC/DC/OHMS/Current/Temp.
SOLARTRON
LM1420.230 FSD DC Only 0.05%
LM1420.23A 2300 FSD AC True FMS/DC

The Wordaty four finger tipswih E®DDUSTOME

10 kHz to 1000 MHz

Receivers offering complete coverage from 10 kHz to 1000 MHz available to meet most stringent requirements, with supporting accessories to meet most stringent req
(Mode/1837/2 illustrated).

Eddystone receivers are in current use by: *WORLD EMBASSIES * INTERNATIONAL ORGANIZATIONS * POLICE FORCES * INTERNATIONALPRESS *GOVERNMENTDEPARTMENTS * UNIVERSITIES

Are your meters good enough?
If your recordings are spoilt by uneven levels and overloads-install Soundex professional PPM's now.

The pre-eminent pick-up arm
Whilst able to explore the best of the present, the Series III precision pick-up arm anticipates the greater engineering elegance of impending miniature cartridge's which may weigh as little as one and a half grammes.

Its unique patented balance system minimises mass and inertia, presenting optimum conditions for even the most delicate transducer.

No other pick-up arm is as versatile, a reason why the Series III is already playing its part in the development of tomorrow's cartridges.
Choose it.for your listening pleasure today with confidence in the future

*Another accolade for SME: the Series III precision pick-up arm was one of the Design and Engineering
Awards at the 1979 U.S Summer Consumer Electronics Show, the only pick-up arm to be acknowledged in this way.

Series III precision pick-up arm

The best pick-up arm in the world

Write to Dept 0655
SME Limited, Steyning Susse BN4 3GY, England
 The LMM-100 has an adjustable handle, a 2,000 hour battery life and is ideally suited to field or bench use. It measures voltage from 0.1 mV to 1 KV , current from to $20 \mathrm{M} \Omega$. 0.1% basic accuracy
Lascar Electronics LLt, Unit 1, Thomasin Road, Basidon, Essex.
Telephone No: Basiboo (0268) 727333 .
To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex. Please send me Data
LMM-100
Name

Name
Address

WW - OO9 FOR FURTHER DETAILS

VIDEO or AUDIO bULK ERASURE

MAX REEL SIZE 11发
MAX

PainlessHz!

NEW from Anders. Panel-mounted frequency meters with easy-to-read, precise digital display. - Fast reading. No separate tranducers required. - Versions for most generator and electrical power applications.
From £39-competilive with analogue - Fruivalents.

Ask for further details on the new Contrology Range of Ask for further details on the new Contrology Range of
DIGITAL Wattmeters, Voltmeters, Ammeters. Frequency Meters, Power Factor Meter
Standard versions ex-stock.
DIIIERSMERISMETERS

Britain's Best Breadboard Buy at Breadboard 79

EEVERS-RICH EQUIPMENT LIMITED
319 Trinity Road, Wandsworth
London SW18 ${ }^{\text {Sit }}$.
London SW18 SLL
$01874-9054$ Telex 923455
($\mathbf{0 5 8}$ FOR furthér details

The ' C ' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

S 500D
Dual Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channel 900w r.m.s. in bridge mode DC-20 KHZ at full power
0.005\% harmonic distortion (typical) at 300w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-built force cooled dissipators

S 250D
Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500w r.m.s. into 2.5 ohms
Retro-convertible to dual channel DC-20 KHZ at full power
Full short and open circuit protection
Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available
Alternative input and output termination to order. Rack case for bench use built to Alternative input and output termination to
specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594 FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR

Topvalue testequipment fromTANDY

The NEW ORYX SR3A/Micro opyx
Mini-silver de-solder tool. A more powerful version of
the SR3A.
ORYX SR3A
Mini-orange. Our most popular model, the industry's standard tool.
internal diameter.
The Micro-Mini SR6
Only $1 / /^{\prime \prime \prime}$ diameter. Weighs only $10 z$ - the smallest, really effective de-solder tool available.

ORYX 881
Bulb Solder Sucker. Handy, lightweight and easy to use.

Greenwood Electronics

Portman Road, Reading, Berks. RG3 1NE Tel: (0734) 595844 Telex: 848659

You can get a lot out of our free catalogue

Thenew Toolrange catalogue

still the only catalogue of itskind

The New Toolrange Catalogue is still the only comprehensive single source of electronic tools and production aids. The product range has almost doubled since last year and now over 2,000 tools since last year and now over 2,000 tools,
toolkits and service aids are illustrated in full colour
Pull colour.
Products from over 100 top manufacturers are available from stock.
Over 60,000 catalogues are now in circulation. If you don't have one simply write, telephone or telex Toolrange for your
free copy. free copy

Upton Road, Reading, Berks. RG3 4JA

WIRELESS WORLD, NOVEMBER 1979

IOX0-100 SERIES LOW

 PROFILE CRYSTAL CLOCK OSCILLATORS The frequency range 600 Hz to 30 MHz is covered by both CMOS ($600 \mathrm{~Hz}-8 \mathrm{MHz}$) and overall tolerance of $+0.01 \%$ from $+70^{\circ} \mathrm{C}$. For more stringent requirements, $\pm 0.01 \%$ from -55 to $+125^{\circ} \mathrm{C}$ is available. Many frequencies can be supplied from stock.

INTERFACE QUARTZ DEVICES LTD 29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g wW - 073 FOR FURTHER DETALLS

POWER UNITS

 Now available with3 OUTPUTS

Type 250VRU/30/25
OUTPUT 1: 0-30v, 25A DC OUTPUT 2: 0-70v, 10A AC OUTPUT 3: $0-250 \mathrm{v}, 4 \mathrm{AAC}$
\qquad
$\xrightarrow[\text { Continuously }]{\text { ALL }}$ Variable

How...Why...When?

Distress calls are made every day-hundreds each year, and in every case questions are asked. Questions which require accurate, up-to-the-minute answers. Answers that can only come from reliable and immediately accessible communications recordings. When police, ambulance, fire, local ATC and other services are called upon, either by radio or telephone, they often receive hasty, garbled messageshasty, garbled messagessometimes several at a time. need for communications
recording arises-a need for system with instant message trace and replay-at the touch of a button-and at any speed to assist intelligibility.

All these facilities, and more re available in the Racal Recorders 'Callstore' cassette recorder/reproducer. Actuated either by incoming audio signals or by local or remote control, Callstore uses four cassette transports, each giving up to four separate channels, including a search control track which is cued at the beginning of each message.

For details write to Racal Recorders Limited Hardley Industrial Estate Hythe, Southampton, Hampshire, SO4 6Z England. 0703843265 Telephone:0703
Telex:47600.

RACAL

Callstore, from Racal Recorders,answers all thequestions.

In the world of sound system equipment PAC-SYSTEM amplifiers offer the widest range of plug-in mainframe variables - AM and FM tuners, monitor amplifiers, graphic equalisers, ambient noise sensors, alarm and tone signal enerators and total system status monitoring eliable installation, simply and economically.

Because every unit just plugs in, there is never any need for costly special units, and with thi versatile plug-in system expansion is virtually limitless.

Such a versatile system can confidently satisfy your exact requirements for public address, sound distribution or reinforcement, teleconferencing and life safety.

Please tick as required
For further information on this product \square
Complete range of sound equipment

Name
Position
Attach this coupon to your letter heading and send to:
MILLBANK ELECTRONICS GROUP LIMITED,MARKETING SERVICES UNIT,
MILLEANK P.O.BOX 33 , UCKFIELD, SUSSEX. ENGLAND.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14
days delivery. Ovther Range and special scales can be inade to order.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

[^0]

TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

WW - 025 FOR FURTHER DETAIIS

FEATURES

- Serial RS232 interface
- Serial RS232 interfa 80 characters wide
- Bidirectional printing -60 lines per minute -10 line print buffer
- 96 character ASCII set (includes upper/lower case, $\$$ \# ${ }^{\text {) }}$

The Nascom IMP plugs straight into a Nascom $1 / 2$ but usable with all other micro systems. Parallel option will be available shortly. - $8 \frac{11^{\prime}}{}{ }^{\text {" }}$ paper
Optional tractor feed - Baud rate from 110 to 9600 - External signal for optional synchronisation of baud rat

BOXEDANDBUIT FOR ONIY E325w

PLAIM PAPER PRITIER

ww - 101 FOR FURTHER DETAILS

RF PREAMPLIFIERS AND CONVERTERS

TYPE 8025
STRIPLINE RF PREAMPLIFIER
$200 \mathrm{MHz}-1500 \mathrm{MHz}$. NF 1.2 dB
TYPE 8026
STRIPLINE RF CONVERTER Input in the range $200 \mathrm{MHz}-1500 \mathrm{MHz}$.
Output in the NF 1.2 dB .
TYPE 8027
RF PREAMPLIFIER
1 MHz - 250 MHz . NF 1.0 dB
TYPE 8028
RF CONVERTER
Input in the range $1 \mathrm{MHz}-250 \mathrm{MHz}$.
Output in the range $1 \mathrm{MHz}-250 \mathrm{MHz}$.
NF 1.0 dB
ALL UNITS ARE SUITABLE FOR MASTHEAD MOUNTING OR LABORATORY USE
SPECIALISING IN DUAL OIVERSITY AND ISB RECEIVING COVERING HF, VHF AND UHF SPECIALISING IN DUAL DIVERSITY AND ISB RECEIVING SYSTEMS
For further information contact:
Regetreh
RTinhininations

PEEL HOUSE © PORTERS LANE © OSPRINGE © FAVERSHAM O KENT ME13 ODR © ENGLAND TELEPHONE: FAVERSHAM 2064 (STD CODE 079 582)

REGULATED

TYPE 217 DUAL POWER SUPPLY $£ 86.22$ $+£ 2.50$ car. $\&$ ins.
CONSTANT VOLTAGE or CONSTANT CURRENT - Digital monitoring of either voltage or current
-Digital monitoring of either voltage or current
-Independent setting of positive or negative voltages and
Currents
Other value-for-money products include:
Filter oscillators. function Filter oscillators, function generators
Frequency meter, Counter Timers Frequency meter, Counter Timers
Off-air standard, DPMs \& Bar-type meters
OMB ELECTRONICS
Riverside, Eynsford, Kent DA4 OAE
elephone: Farningham (Code 0322) 863567 Telephone: Farningham (Code 0322) 863567
Prices (which are CWO, ex Vat) are correct at time of going to Prices (which are Cwo, ex vat) are correct out notice
press and subject to change without

Electronics'79The show of many component parts

3ELECTRONICS 79

Electronics ' 79 is the new name for a show with an excellent pedigree. Known previously as the London Electronics Components Show-it builds on 34 years
experience to bring the years most important event to the fast-changing world of modern electronics. And the sponsorship of the Electronic Components Industry ederation ensures real professionalism as well as trade support.
The scope of the show has expanded greatly to industry. So the range comprehensive service to exhibitors will be wider than ever, and both active and passive components will be fully represented. You will see the latest in micro processors, bubble memories om-conductors, and all the rest of the new lectronics. And as Electronics ' 79 will be the showcase of the year's new product developments it will be a vital communications, science, industry, education, data handling, navigation, aerospace and other key fields
that these new components are helping expand, afford to miss if keeping ahead in electronics is vital to your profitability and expansion. And the occasion gives you further opportunities to learn at a fascinating series of ECIF seminars which are encompassed under he title of "Components of Assessed Quality-The Full details of the seminars are available from ECIF 7/8, Savile Row, London, W.1. For further information on Electronics' 79 write to:- Print Services Department, Electronics'79, Industrial \& Trade Fairs Limited, Midlands, B91 2BG. Tel: 021-705 6707. Telex: 337073.
Electronic Components Industry Fair, 20-23 November 1979, Olympia, London. Opening hours: 20,21 and 22 November 9.30-18.00 hrs.
 Sponsored by: The Electronic
Components Industry Federation.

 internutianal 2 Trieshim Rnud, Brentwond, E5SER. ww - 037 FOR FURTHER DETAILS

YOUR LAST CHANCE to obtain Wireless World

Worid circuit cards, even

 though the companion bound volumes Circuit Designs 1 \& 2* are out of print. Fill the gaps in your circuit files with these sets of $5 \times 8 \mathrm{in}$. ($127 \times 204 \mathrm{~mm}$) cards in plastic wallets - and at 1976 prices! These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.*The two out-of-print volumes contained sets 1 to 10 and 11 to 20 of Circards.

1 Basic active filters 2 Switching circuits, comparators and Schmitts $\mathbf{3}$ Waveform generators 4 AC measurements 5

Micropower circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm
circuits 14 Digital counters 15 Pulse circuits 14 Digital counters 15 Pulse
modulators 16 Current differencing modulators
amplifiers-signal processing
17 Current differencing amplifiers-signal generation 18 Current differencing amplifiers measurement and detection 19 Monost
able circuits 20 Transistor pairs 21 $\begin{array}{lll}\text { able circuits } & 20 \text { Transistor pairs } & 21 \\ \text { Voltage-to-frequency converters } & 22\end{array}$ Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators - 126 RC oscillators $\begin{array}{lll}-2 & 27 \text { Linear cmos - } 1 & 28 \text { Linear cmos } \\ -2 & 29 \text { Ans }\end{array}$ log/power laws 31 Digital multipliers 32-Trānsistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - $1 \quad 35$ Analogue gate applications
$\begin{array}{ll}\text { Audio circuits } & 6 \text { Constant current circuits } \\ \mathbf{9} \\ \mathbf{7} \\ \mathbf{9} \text { Optoelectronics } & \mathbf{1 0}\end{array}$
To: General Sales Department, IPC Electrical-Electronic Press Ltd., To: General Sales Department, IPC Electrical-Electronic Pres

Please send me the following sets of Circards

$£ 2$ each, $£ 18$ for ten, inclusive

I enclose cheque /money order for $£$
Make cheques payable to IPC Business Press Ltd.
Name
Address
-

Card-expandable micro-processor
Heart of the KGM 700 a micro-processor powerful
enough for enough for really fastertext
movement. Card expansion
space space allows for extra
memory up to 64 K .

High performance display High definition scan coil and
dynamic focussing give exceptionally clear display on the 12 " screen. A character
generator offers 80×24 characters in 10 to 48 pt KGM designed to match
display performance a separate plu
for easy use.

WW - 055 FOR FURTHER DETAILS

䢒

Youill do better at Martin Associates we guarantee it!

BUY an ELF II
 E35.00
79.95 VAT

```
                KIT
                KIT some TV games

\section*{11 BOARD WITH VIDEO OUTPUT}
 ASC11 Kevoord Kist 96 printable characters, etc.
ASCII d d/ux steel cab (IBM Biue)

 lines on TV/ Monitor screens

 + + RA cassente Texx Editor: Assembler: Disassembler (each SAU Lasseme AN BUY ALL THREE TOGETH
All units can be supplied wired and tested
and
 assomblod and tested. Plus \(£ 2 P Q P\) (Monitor not included).

\section*{NOW AVAILABLE 8k BASIC FOR ELF II}

wW-921 FOR FURTHER DETAILS

NEW Modern home studycourses inelectronics.

Complete Self-sudy training in:
1) Basic practical electronics - curcuit diagram masters - building oscilloscope and other test master
2) Training for Radio Amateur Licencé
3) Training for City \& Guilds and other 3) Training for City \& Guil
professional examinations.
professional examinations.
a) Servicing and maintenance
a) Servicing and maintenance of Radio, T.V b) Digital electronic and Comput
b) Digital electronic and Computer technology.

Brochure, without obligation to:-
British National Radio \& Electronic Shool P.O. Box 156, Jersey, Channel Islands

Specialists in electronic trainin Established over 40 years.

METAL CABINETS FOR ELECTRONIC INSTRUMENTS

 FOR FULL DETAILS ON THESE AND OTHER MODELS, CONTACT THE SOLE AGENTS, LOWE ELECTRONICS WW - 046 FOR FURTHER DETAILS

ELECTRONIC
INDUSTRIAL THERMOMETER


THE MODERN WAY TO MEASURE TEMPERATURE A Thermometer designed to operate as an Electronic Test Meter. Will
measure temperature of Air. Metais, Liquids. Machinery. etc., etc. Just plug-in the Probe, and read the temperature on the large. eper.
scale meter. Supplied with caryyng case, roope and internal \(11 / 2\).
volt stand

 Write for further details (VAT \(15 \%\) EXTTRA)
HARRIS ELECTRONICS (LONDON) 138 GRAY'S INN ROAD, LONDON, WCIX BAX (Phone 01-837 7937)

Please phone for availability before ordering. All our price
include \(15 \%\) VAT.
.
Companies invited to send SAE for our up to date Wholes

\section*{WHOLESALE}

ELECTRONIC COMPONENTS
AU113
BC183A
BC 184L
BC 212A
4v7 ZENER
3K. PRESET
TBA800
7448
.01uF DISC
STOCK PRICE
183
98
\(\begin{array}{cc}183 & .98 \\ 2,000 & .036\end{array}\) 2,000 4,000
2,000 12,000
20,000 20,000
6,000
1,600 1,600
10000 10,000
10,000
16 Pin DIL
10,000

\section*{STRUTT}

ELECTRICAL AND MECHANICAL ENGINEERING LTD.

COMPONENT DISTIBUTORS


ER 1979

\section*{Atlast! Britain's}


First issue includes:
SARGON meets the Nascom-1 - J. Haigh
Pascal and the PET - J. Stout.
Programming practices and
techniques - Dr. M. Beer.
I'm Pilot, fly me -
D. Straker.

Letter from America
-D. Smith
Apple pips
C. Phillips.


THRULINE WATTMETER
The Standard of the Industry The Standard of the Industry
xclusive UK reoresentative
aspen electronics limited 2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UR
TELEPHONE: \(01-868\) 1188 - TELEX 8812727 hat more need we s

and here's just one reason why . WE'VE LINKED OUR STEPPER MOTORS WITH I.C.'s - A GREAT SOLUTIONTO MND POSITIONING SPED DMS PROBLEMS
It's ideas like this that make Impex leaders in small electric motors. In this
case we've done away with costly and complicated electronic drive requirements and given you simplicity and efficiency at a price that makes sense. Why not find out more about the complete range of below, or phone
\(\square\) IMPEX ELECTRICAL


ww - 103 FOR further detalis
ww - 008 FOR FURTHER DETAILS

\section*{Quantum Electronics \\ THE LATEST AND BEST SOURCE}

OF SUPERFI AUDIO EQUIPMENT


'STATE OF THE ART' PRE-AMP


'DOMESTIC' POWER AMP KITS

'SLAVE TRAY' \& RACK MOUNTING KITS




MODULES: UP TO 250W r.m.s.





 \({ }^{14}\) A STAMFORD STREET, LEICESTER LE1 6NL
USA: OX DISCO, BoX 123, CLAYMONT, DE 19703

\section*{If we told you the best way to talk to your staff...}
what would you say?
We can tell you how to talk to your secretary, your accounts clerk, your foreman - or to all of them at once. We can now offer you the first really practical and economical duplex intercom system - for all your communication needs.


The first \(100 \%\) British designed and manufactured duplex intercom system
Omploys paging smallest known control unit
Conferaging facility as standard
- Uses less cabe facilty up to 8 stations - also standard

Uses less cable than competitive systems. Easier to install - More standard facilities-And less
expensive than mostother systems 000 most other systems

\section*{Barkway Electronics Ltd, Barkway, Royston, Telephone Barkway ( 0763 84) 666 Telex 817651. Barcom G} wW - 042 FOR FURTHER DETALIS
carbon film RESISTORS
PRICES REDUCED. SEND FOR DETAILS NOW


\section*{Visit the}

PROFESSIONAL Viewidia EXHIBITION

A DEMONSTRATION OF EQUIPMENT AND SERVICES FOR THOSE PROFESSIONALLY engaged in teletext and viewdata


West Centre Hotel, Lillie Road, Fulham, London, November 7 \& 8
from 10 am each day.
Nearest Underground station - West Brompton on the Wimbledon branch of the District Line On leaving the station, turn leftr; the West


\title{
Soundstar from Beyer Dynomic
}

True supercardioid characteristic

Well balanced, rising frequency response with low frequency roll-off and presence boost
Built-in hum bucking coil to cancel electromagnetic hum

Breath and "pop" filter
On-off switch
Professional three-pin audio connector

\section*{DESCRIPTION AND APPLICATIONS}

The Beyer Dynamic model M \(400 \mathrm{~N}(\mathrm{C})\) soundstar mk II is a unidirectional moving coil microphone, especially designed to meet the demand of musicians, singers and entertainers for an elegant and superb sounding cast, recording and stage applications. Its supercardioid pickup pattern minimizes background noise and cast, recording and stage applications. Its supercardioid pickup pattern minimizes background noise and other undesirable acoustic effects. A highly effective built-in burst filter controls explosive breath and "pop"
noises. For boom, stand and hand use, indoor and out, the M 400 is unaffected by humidity and temperature extremes. Its rugged construction makes this microphone particularly suited to withstand temperature professional use. The microphone is fully fieldserviceable.

\section*{M 400 N [C]}
soundstar mk II

\section*{Bever \()\) )) Dynamic}

WIRELESS WORLD, NOVEM
JE S AUDIO INSTRUMENTATION

 Distortion Measuring Unit
\(15 \mathrm{~Hz}-20 \mathrm{KHz}-.01 \%\) Low distortion Osciliato
Sind - Square-RIAA PRICES plus VAT J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton (0274) 872501
GARR STREET, CLECKHEATON, W. YORKS BDI9 5LA
ww - 030 FOR FURTHER DETAILS

\section*{TV TUBE REBUILDING}

Faircrest Engineering Ltd., manufacture a comprehensive
range of equipment for processing all types of picture tubes, range of equipment for processing all types of picture tubes,
colour and mono. Standard or custom built units for estab-
 Full training courses are individually tailored to customers: Full training co
requirements.

\section*{For full details of our service contact Neil Jupp}

FAIRCREST ENGINEERING LTD.
Willis Road, Croydon, CRO2xx
\(01-6841422,01-6898741\)
01-684 1422,01-6898741
WW-049 FOR FURTHER DETAIIS


C2000
REMOTE OPERATION TAPE FOR DIGITAL OR AUDIO THIS BRITIISH MADE CASSETTE RRANSPORT HAS GIVEN
INDUSTRY A GREAT COST - SAVINGS OVER
COMPARABLE FOREIGN COMPARABLE FOREIGN
IMPORTS AND \(\operatorname{INOW}\) NENG
CAN BE SUPPLIED WITH TAPE FAIL/
END DETECTION, SEARCH, AND FAST
FULLY REMOTE OPERATION. WRITE NOW FOR FULL DETAILS
BASIC PRICE \(\ddagger 60.30\) INC. VAT.
POPULAR UNIVERSAL CASSETTE TAPE HEADS



Lul-|1-|hhti
The Monalithelectirance colto
WW - 019 FOR FURTHER DETAILS


1
fact: professional studio technology comes to home hi-fi!


There is a new pickup cartridge line that is the talk of the recording and
broadcasting industries the Shure SC39 Series It is the first professional broadcasting industries: the Shure SC39 Series. It is the first professionally
optimized combination of true high fidelity performance, superb trackability optimized combination of true high fidelity performance, superb trackability,
resistance to stylus damage under gruelling conditions, and prolonged record
life These lifis. These unique features make the SC 39 ideal for high quality home
applications as well.:
if you prefer a professional cartridge Use the cartridge developed for professional recording studios. The SC39 Series improve stability when professional backcuing and slip-cuing techniques are employed.
In addition, the SC39 offers a unique stylus tip not available on any other cartridge
the MASAR'" tip, designed for playing even delicate lacquer masters, without objectionable noise build for playing even delicate lacquer masters, without with high surface noise, or 45 rpm records made from reprocessed, substandard
vinyl or polystyrene.


\section*{if youngsters have access to your hi-fi}

if you prefer professional response
The transparent sound of the SC39 Series is due to its optimized professional response which is virtually flat through the upper mid-range,
with a smooth and gentle rolloff at the highest frequencies. It is especially oleasant when used with loudspeakers that tend to exaggerate the high

There are three models in the SC39 Series:
SC39ED
SC39EJ-Biradial (Elliptical) stylus for \(3 / 4\), to \(11 / 2\) gram tracking
Siradial (Eliptical) stylus for \(11 / 2\) to 3 gram tracking
SC39EJ—Biradial (Elliptical) stylus for \(11 / 2\) to 3 gram
SC39B—Spherical stylus for \(11 / 2\) to 3 gram tracking
Send for brochure AL620.
SC39 series professional pickup cartridges ...by © SHURE

\section*{wireless world}

\section*{Trickle, trickle little chip}

Editor:
TOM IVALL, M.I: E.R.E.
Deputy Editor: PHILIP DARRINGTON
Phone 01-261 8435
Technical Editor: GEOFFREY SHORTER
Phone \(01-2618443\)

Projects Editor: MIKE SAGIN
Phone: 01-261
8429
Nows Editor: RAY ASHMORE, B.Sc., G8KYY Phone 01-261 8043 Communications Editor: TED PARRATT, B.A.
Phone \(01-2618620\) Drawing Office Manager:
Roger goodman
Production \& Design:
Advertisement Controller:
G. BENTON ROWELL

Advertisement Manager
BOB NIBBS, A.C.I.I.
Phone \(01-2618622\)
dAVID distey
Phone 01-261 8037
BARRY LEARY
BARRY LEARY
Phone 01-261 8515
Classified Manager:
Phone 01-261 8508 or 01-261 8423
NEIL MCDONNELL
(Classified Advertisement
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

Trickle,
Place a microprocessor in the soilbegrimed hand of an Indian peasant
and tell him that this is the latest thing for increasing material wealth, and he will stare at you in utter disbelief. What possible connection could there be between this enigmatic device and
the simple tools by which he scrapes a meagre existence from the dusty plains around him? The very height of his aspiration in technological
development is that one day he might ee able to replace the animal drawing ironically, the price of microprocessor is now so low that he could probably buy one in a few weeks or months, here were any point in doing so. While Britain and other mpact of new technologies such as microelectronics and squabble over how the economic benefits should be shared out, there stands in the background, casting a great shad over all of us, the poverty and
deprivation of the majority of mankind. Today, when there are no longer any technical reasons for failing to supply all the world's inhabitants with adequate food, clothing, shelter
and health and education services, it is a crime against humanity that in Europe, America and Japan we have huge productive resources locked up in catering for the buying power of an been made avid for luxury goods such as (in our field) television games, hi-fi equipment, home computers and microprocessor-driven door chimes. Conservative minded politicians,
industrialists and their tame economists argue that it will all come right in the end, by a process of what they call "trickle down." The present stark inequalities between peoples wi eventually be smoothed out by
improvements in capital investme and productivity in the poor countries. Meanwhile they shed crocodile tears and continue to give economic "aid" which in practice merely increases the technology of the rich and powerful
ones, and on the multi-national orporations, and is used cynically as a eapon in the world power struggle. One possible solution to the problems of the poor countries is "alternative technology," as it is means the use of labour intensive manufacturing techniques instead of he capital intensive, labour saving nes that the industrialized countries have developed so thoroughly. This measure, but in the long term the poor countries are not likely to want to shut heir doors permanently against high echnology. In a recent paper Nations Conference on Science and Nations Conference on Science and Vienna, the Research Policy Institute at the University of Lund, Sweden, points ut that labour intensive nanufacturing could become a dea imitations to human powers compare with the increasing speed, accuracy, eliability and low cost production modern electronically controlled machines. Consequently the goods methods could become relatively lowe in quality, less attractive and therefore ess competitive on world markets. Th nstitute thinks that the developin countries should harness high o increase the productivity of their ndustries as a means of accelerating capital accumulation. "This capital is essential for rural and urban
development and for providin manufactured inputs for agriculture as well as for meeting the essential material needs of the entire population at the lowest possible cost. The Institute's call fo microelectronics technology to be possible to the whole world, instead of just being left to "trickle down," is heartening and optimistic for engineer and technicians who work in this narrow specialization of their N1700 series to be maintained especially, they say, for still, slowmotion and speed-up playback, while
reducing track width by a factor of four In this technique the positions of the two video heads on the head wheel are adjusted by piezoelectric actuators. And because of the absence of guard
bands, the inherent by hysteresis in the bands, the inherent by hysteresis in the
actuator material and other tolerances, actuator material and other tolerances, during recording. This is achieved by recording with one actuator in a
nominal position and the other in a nominal position and the other in a
control loop. A signal, situated below the colour information in the spectrum at 223 kHz , is recorded in the vertical blanking interval at the beginning of each track. Its amplitude value, lasting for \(1 \frac{1}{2}\) lines, is stored and the heads
switched to play so that crosstalk from the preceeding track containing a similarly recorded signal can be read, at a level that depends on its distance from the head.
less \(11 / 2\) lines track finishes at the beginning of the burst of the one previously recorded. The difference is used to feed the head actuator so that a pre
crosstalk figure is achieved.
The track following mechanism is al so operative on playback. To allow the side of the track and head to be identified four supplementary track-
following signals have to be recorded on following signals have to be recorded on
each of four consecutive tracks, and at four different frequencies that do not interfere with the picture signals (102, 117,149 and 164 kHz are chosen). Three frequencies are picked up and fed to a mixer, one from the track being foleach adjacent track, together with a reference signal of a frequency equal to that on the wanted track. The output contains sum and diference frequencies, fing two difference signals that are rectified, compared and the resultant control signal used to actuate the corresponding head position and tape servo. This is the feature that enables previous systems, to be dispensed with. The sync track featured in other systems isn't needed either. There are two, so far unused, control signal tracks in the V2000 format, which may be used
for coded programme identification.) The sequence of 'tones' is: head one records 102 kHz , head two 117 kHz . head one 164 kHz and head two 149 kHz . As a particular arbitrary example consider head one play of 117 and 149 kHz appears, freque if deviates upward a 15 kHz signal is produced. (For head two, playing 149 kHz , a downward deviation provides \(164-149=15 \mathrm{kHz}\), whereas an upward
deviation gives a high difference \(49-102=47 \mathrm{kHz}\) ) Through a compa-


Tape consumption of the
Philips/Grundig compact video cassette recorder works out to be 0.56 \(m^{2}\) per hour - 35\% lower than Betama about 10 guilders per hour, say Philips. Kernel scanning assembly shown will be bought by Körting, Loewe, Metz, ITT.


Piezoelectric actuators allow video head movement to be controlled automatically both on record and playback with the aid of recorded guidance signals.
rator and corresponding actuator these difference signal levels keep the heads in the correct position. If the two video heads move in the same direction, the control voltage is fed to the tape servo to move the
alignment.
alignment.
Relative head-tape speed is the other factor effecting tape consumption, being determined by the shortest recordable wavelength of about \(1 \mu \mathrm{~m}\). The \(5.08 \mathrm{~m} / \mathrm{s}\) speed derives from of \(2.44 \mathrm{~cm} / \mathrm{s}\) - phase controlled speed of \(2.44 \mathrm{~cm} / \mathrm{s}\) - phase controlled
by a \(116.4 \mathrm{rev} / \mathrm{min}\) directly-driven tacho-capstan and reference oscillator (on record) of 419.376 Hz - and a 65 mm dia. head drum rotating at 1500 tape. A photograph shows the head drum assembly with recessed guide groove, protruding spindle and slip
rings, audio and erase heads and tape rings, audio and erase heads and tape guides. The lower, fixed tape drum conCoupled to a 125 -pole tacho generator, the disc triggers one pulse per revolution, which rate is compared with a 25 Hz reference, obtained by dividing the vertical frequency during record The whole scanning unit is factoryadjusted and can be readily exchanged during servicing. Philips say they will supply the ass
manufacturers.
with earlier Philips and Grundig As with earlier Philips and Grundig
VCR machines angled heads at \(\pm 15\) reduce crosstalk in the luminance re gion. And a comb filter and adder circu is designed to eliminate crosstalk from the chroma signal, which is tr
down to a 625 kHz sub-carrier.
down to a 25 kHz sub-carrier.
Microprocessor sequence control, search tuning and programmability are features of the first machines. The Philips model VR2020 stores 26 pro-
gramme tunings ( 19 in the UK) and gramme tunings ( 19 in the UK) and
memorizes five recording times, with start and stop times, day and channel number for up to 16 days in advance. The Grundig Video \(2 \times 4\) model however has an eight-station memory and allows period of ten days, individually alterable. The two companies are of course quite free to produce completely dif ferent machines; the essential provision is that of complete interchangeabily automatic track following technique. Price of the VR2020 model will be 20 \(30 \%\) higher than that of the N1702 recorder. Philips, Eindhoven say that remain "as long as there is demand for them" but a later statement from the UK end that "the series will continue into 1980" is less open.

Back in 1974, the only video cassettes (Sony and VCR) lasted an hour at most and consumed tape at the rate of \(6.6 \mathrm{~m}^{2}\) per hour or more. The announcement by BASF of a two-hour longitudinally tion of \(2.3 \mathrm{~m}^{2}\) per hour looked good, es pecially as the 28 tracks on the 6.25 mm tape could be copied simultaneously Three years later, at the 1977 Berlin show BASF gave a progress repor
which showed it could get 48 tracks which showed it could get 88 er track \(\mathrm{m} / \mathrm{s}\) and using \(6 \mu \mathrm{~m}\)-thick tape the could get up to two hours playing time Since then, things have change longer compete on the ground of tap consumption, nor on the basis of playing time, though BASF can now pu 72 tracks on the tape and get a playing lime of three hours. Claims laid to away too - Hitachi announced an NTSC portable VHS recorder weighing 5.7 kg , very close to BASFs 5 kg hough it's pretty obvious LVR ha potential for further miniaturization. video cassette (cartridge?) measure \(14 \times 106 \times 17 \mathrm{~mm}\) and making it th world's smallest. Actually BAS wouldn't have been able to claim this injunction preventing Blaupunkt from howing a miniaturized version. The two firms announced a licensing con tract for the development of go using the Nedull tape transpo unit that would play for 30 minutes and ment of their Mini-Maz 1, as Blaupunkt called it, it seemed clear to BASF that some of their ideas had been used, at Funkschau (August 17 issue); hence its non-appearance at the exhibition. In the BASF recorder, shown for the first time in pre-production form at
Berlin, the transport mechanism feeds Berlin, the transport mechanism feeds
tape longitudinally past the head. A central motor and capstan are in close contact with each of two tape reels. The combined magnetic head can be placed in any of 72 different positions on the 8 mm tape and a display shows track position from
of the tape takes \(21 / 2\)
2 which the head is stepped to the next


New front loading Video 2000 format is adopted by Philips, who will also make recorders for Körting (shown above), Loewe-Opta and Metz, and by Grundig who will also manufacture for ITT.

haracteristics of recent domestic video systems shows re
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & vCR & VCR-LP & sve & \[
\begin{aligned}
& \text { VHHS } \\
& \text { (PAL) }
\end{aligned}
\] & \({ }_{\text {(PALA }}\) & 2000 & \({ }_{\text {LIo }}^{\text {Basf }}\) & Toshiba \\
\hline Max. time (h) & 1 & \({ }^{2+}\) & 4 & \(3+\) & 3 & 8 & 3 & \\
\hline Track width ( \(\mu \mathrm{m}\) ) & 130 & 85 & 51 & 49 & & 22.5 & 100 & 50\% \\
\hline Tape speed (cm/s) & 14.3 & \({ }^{6.56 .}\) & 3.95 & 2.4 & 1.87 & 2.44 & 400 & 600 \\
\hline Tape width ( m m ) & 12.5 & 12.5 & 12.5 & 12.5 & 12.5 & 12.5 & 8 & 12.5 \\
\hline Tape usage ( \(\left.\mathrm{m}^{2} / \mathrm{h}\right)\) & 6.6 & 3 & 1.83 & 1.07 & 0.86 & 0.56 & 1.6 & 1.25 \\
\hline Write speed ( \(\mathrm{m} / \mathrm{s}\) ) & 8.1 & 8.1 & 8.2 & 4.85 & 5.83 & 5.08 & 4 & 6 \\
\hline Drum diameter (mm) & 105 & 105 & 105 & 62 & 74.5 & 65 & - & \\
\hline Head angle (deg) & \(\pm 15\) & \(\pm 15\) & \(\pm 15\) & \(\pm 6\) & \(\pm 7\) & \(\pm 15\) & - & - \\
\hline
\end{tabular}
track and the running direction reversed. Total running time is there-
fore \(7 \times 2.5\) minutes, or 3 hours Revers ing is done in a period that is a multiple of the field time - in this case 100 ms . Reversal starts at the beginning of a field and ends synchronously at the end of the fifth field and results in an almost with a scene change. A timebase corector reduces error on the combined video and sound signal to 60 ns .


The recorded signal uses the "colour under" approach with two frequency modulated sound carriers of about 100 and 200 kHz . BASF say the recorder sound application, in place of digital recording equipment, but their sugges ion that "expensive digital recording techniques may become obsolete for Present audio capability of the video system is an improvement for video cassette recorders, with a response to 12.5 kHz , a signal-to-noise ratio of 56 dB ,
and a wow and flutter of \(0.01 \%\), thanks and a wow and flutter of \(0.01 \%\), thanks feature - besides the potential for compactness that the transport gives - is that all 72 tracks can be duplicated in minutes in one pass. Marketing is planned mid-1980.
An engaging comparison of video recorders on the BASF stand showed a
surprisingly similar performance on programme - at a somewhat superficial level between all the current formats,
but the comparison didn't include the but the comparison didn't include the
Toshiba longitudinal recorder, first shown at this year's Consumer Electronics Show, Chicago. This endless tape system uses a special lubricant layer backing on the tape and eliminates the signal breaks of the BASF LVR.
Playing time is 17 seconds \(\times 220\) tracks. The unit measures \(250 \times 140 \times 330 \mathrm{~mm}\) and the cassette \(135 \times 35 \times 140 \mathrm{~mm}\). The NTSC prototype unit demonstrated gave rather poor colour and sound per-
formance, but a good noise reduction system could easily improve the 40 dB sound signal-to-noise ratio. Incidentally, Dolby Laboratories announced that the VHS group of manufacturers,
Matsushita, Mitsubishi, Akai, Hitachi Matsushita, Mitsubishi, Akai, Hitachi
and Sharp, have all agreed to add Dolby B noise reduction (much needed) to the new two-channel VHS recorders as a standard feature. Like the Dolby B system, Telefunken's
High Com is a simplified form of a studio compander. Telefunken's approach back in 1970 was to look for a - provide adequate compression and expansion
-be complementary in behaviour, even with errors in the transmission channel case of transmission errors

WIRELESS WORLD, NOVEMBER 1979 -reduce audibility of noise to at least that obtaining between signals, and
- not cause audible noise modulation. The result, "telcom C4", appeared in
1974/75 featuring four independent 1974/75 featuring four independent bands so that attack and decay times could be optimized and masking made more effective. Attack tame was chosen
so that for transients gain adjustment is completed in a quarter-cycle of the uppermost frequency of the band; decay time is adjusted so that non-linearity distortion didn't exceed \(0.1 \%\).
However the consumer type is a
wideband compander, with fixed \(\mathrm{h} f\) pre-emphasis during compression and de-emphasis on expansion acting to reduce audibility of noise when masking fails. Turnover frequencies are 1.2 to ZOdBA weighted (see Fig, ); in "silent" passages, High Com gives 11dB less noise than Dolby B. Another difference of course is that this suppression is effective over the whole of audio according to developer Gerhard Dickopp transmission errors of up to \(\pm 6 \mathrm{~dB}\) in level -3 dB at 10 kHz do not result in any impairment in (static) amplitude response. Harmonic distortion arising from negative-going transients is given
as \(1 \%\) at 30 Hz , reducing to \(0.2 \%\) at 1 kHz in less than 200 ms . (Fig. shows response time to a positive-going transient.)
The Telefunken people didn't think the recent addition to the Dolby B system would alter things as far as High signal of B-type circuitry, the HX or headroom extension technique adjusts recording bias and equalization automatically to allow recording up to
10 dB higher in level at 10 kHz (3dB at low and mid-frequencies). But a sentiment voiced more than once was that the improvement was too little, too late to present any real resistance to High Com.
Telefunken say they had made con"interested". Hans-Joachim Thuy licensing manager for High Com, told u this had culminated in seven firm licen-
sees in Japan and the USA. And they were expecting German cassette recorder makers to adopt it shortly, more or less en masse. Telefunken are initially supplying assembled com pander boards to set makers for around source for the U401B i.c. used in the compander. Fifteen exhibitors dis played prototype High Com cassette recorders, though not all are licensee Eumig, Europhone, Grundig, Körting Nakamichi (with a two-band version), Saba, Schneider, Uher, as well as Telefunken of course. Though Telefunken stopped making open-reel separate noise reduction unit is planned for 1980 so that open-reel fans can enefit too.


First cassette deck using Telefunken High Com system for noise suppression offers 76dB signal-to-noise ratio.


1980 viewd
iildschirm or to give it its German name dschirmtext, is big news in the ederal Repubice to Germany at pre first time in 1977 (see Berlin report, Nov. 1977, pp.46-9) it has made significant pro gress since then. At this year's Fun kausstellung, Bildschirmtext was one of the major attractions and talking points, and professional interest. To a casual observer, it looks remarkably like our own

\section*{Reported by D. Fishman}
the sale to the German PTT (Deutsche Bundespost) successfuly concluded in 1977 by the GPO. This gave the DBP the right to use the software developed for
Prestel, as well as the ability to draw on UK expertise and to benefit from the experience gained on the British system. "During the period 1977 to 1979 a "non-public" pilot trial has been started
based on a GEC-manufactured databank located in Darmstadt data Frankfurt. This allowed the PTT, as wel as potential information providers, to

Club (ADAC) the meteorological office and others. The information could be called up from tv sets in the PTT display
area, as well as from the many sets area, as well as from the many sets
scattered around the whole exhibition. scattered around the whole exhibition.
Another group of exhibitors were the Another group of exhibitors were the
newspaper publishers who apart from supplying information stored in the system as mentioned earlier, also had

\section*{Electrostatic headphones}

Constructional design with improved acoustic output
by N. Pollock M.E., M.I.E. Aust.
stands of their own showing and explaining their involvement in the new
medium. In cooperation with the wellmedium. In cooperation with the wellHeinrich Hertz Institute in Berlin, à group of newspapers, BDZV, showed a more advanced concept of home terminal, based on a two-way cable-tv
communication system as a means of linking the terminals with the data banks.



IC1 Lм 3900
fortunately the design and construction of a suitable transformer is very difficult due to the high inductance, low requirements. Because of these difficulties, most constructional designs are driven directly by high voltage amplifiers. Valve \({ }^{1,2}\) and transistor amplifiers have been used but in all 400 V . For convenience the amplifier h.t. supply is normally used to provide the diaphragm polarizing potential. With a thickness (plate spacing \(/ 2\) ) is about hickness (plate spacing/2) is about
0.5 mm which places stringent require ments on plate flatness and diaphragm tension.
Headphone units with the above free field r.m.s. sound pressure (rel 0.00002 Pa ) of about 93 dB . For orchestra

Fig. 1. Amplifier for one channel. Note that the bias sources A and B supply both channels.
music at realistic volume levels a sound pressure capability of a around 100 dB is hecessary and for rock music eve

\section*{Amplifier design}

Most transistors currently available have a maximum \(V_{C E}\) of less than 400 V . However, there are a number of special devices designed for tv horizontal de
flection circuits which flection circuits which have peak \(V_{\text {CE }}\)
values of about 1.5 kV and power ratings of 10 W or more. The present design is based on the Matsushita 2SD 200 but other types such as the BU206 BU209A MJ105, PTC 146-RT or SK \(3115-\) RT can be directly substituted.
The circuit in Fig. 1 is a developmen of an amplifier described in reference 3 . Two high voltage class A amplifiers are used, one of which is driven by a unity gain inverting buffer. Operation of the must be remembered that the LM 3900 is a current input device \({ }^{4}\) with both inputs clamped near earth. All of the amplifiers are biased from the high and low vol
"A Low Cost Log IF" is an application has a bandwidth of 15 MHz at a centr frequency of \(30-60 \mathrm{MHz}\). Booklet describes design of log. i.f. strip, with p.c.b. pattern, using nine i.cs. Semiconductor Specialists
Premier House, Fairfield Road, West Dray ton, Middx UB7 8EX. WW 405 Leaflet on Shure SC39 series of pickup car
tridges for professional use obtainable from
Shure Shure Electronics Ltd, Eccleston Road
Maidstone ME15 6 AU . WW 406

Survey of market prospects for television and radio manufacturers, published by ke Keynote Publications Ltd, 22 Danbury Street, London
N1 8 JU . This nine-page, typed document costs \(£ 12.25\).

tage supplies so no circuit changes or
adjustments are required if the supply voltages are altered. The suggested h.t. of 800 V allows the transistors to operate
well within their safe operating area. The prototype functioned satisfactorily. with a 900 V supply, but above this the transistors may A headph
2.8 V r.m.s. for maximum output was 2.8 r.m.s. for maximum output was
selected so that it could be driven from he headphone output provided on most amplifiers. A \(1 \mathrm{k} \Omega\) resistor from the input
to ground prevents amplifier oscillation when the input is not connected. The prototype was built on two pieces of Veroboard to keep the high and low voltage circuits separate. This arrangedue to construction errors and helps amplifier stability. If instability occurs, the value of \(\mathrm{C}_{1}\) can be slightly increased. The transistors are mounted on small separate heat sinks to avoid the insula-
tion problems of a common heat sink. The power supply design depends on the transformers available. The prototype used a valve power transformer with a 300 V winding to drive a full-wave
voltage doubler for the amplifier h.t. vupply as shown in Fig. 2. The polarizing supply was produced by a half-wave voltage doubler connected to a potentiometer across the amplifier h.t. supply. Because the headphone diaphragms
have a long charging time constant, filtering of the polarizing supply was not considered necessary. A separate

Fig. 2. Power supplies. The l.t. supply should be decoupled with 0.1 HF dise ceramic capacitors near to each i.


15 V transformer was used to provid the amplifier l.t. supply, but if the high filament winding, this can be used with voltage doubling.
It is important th
It is important that the amplifier and power supply are housed in a metal case
which is ventilated and connected to mains earth. To avoid ground loops the headphone amplifier signal earth hould be derived from the amplifie

Fig. 3. Cross-section of a headphone

Fig. 4. Fixed plate construction. Tw symmetrical plates are required for each transducer. The matrix of 3 mm conductive area. Aquadag is available from BDH Chemicals, Broom Road, Poole, Dorset.

plate contact

\section*{Headphone design}

The basic requirements for electrostatic headphone transducers, covered in. are summarized below. The area of the transducer should be large enough to completely cover the ear and give an acceptably low diaphragm resonant frequency without accurate control of
the diaphragm tension. The area of the transducer should not be larger than necessary because the interplate capacitance and the problem of drive amplifier design increases with area.
For maximum acoustic output the For maximum acoustic output the possible consistent with unrestricted low-frequency diaphragm movement. The plates must be rigid, at least \(20 \%\) open and have a perforation spacing

Fig. 5. Spacer construction. This "gasket" is \(0.8 m m\) thick and can be constructed from any flexible
insulating material insulating material.

Table 1. Amplifier performance. All measure ments were made with the headphone trans ducers connected which provided a plate-to plate capacitance including leads of abou
100 pF .
\begin{tabular}{|c|c|}
\hline : Small signal frequency & \\
\hline response & 3 Hz to 25 kHz \\
\hline Maximum ditferential
push-pull outbut & 1400 V pktot \\
\hline Difterential slew rate limit & 25 V \\
\hline :Signal-to-noise ratio relative & \\
\hline to 14000 V , & better than 83dB \\
\hline Maximum distorion & \\
\hline before cliping & \[
0.1 \% 20 \mathrm{~Hz}_{\mathrm{z}} \text { to } 2
\] \\
\hline
\end{tabular}


Diaphragm contact
much smaller than the shor wavelength to be reproduced The surace resistance of the diaphragm must be sufficiently high to prevent charge migration at the lowest frequency to be reproduced. Sufficient acoustic damping must be provided to damp the
diaphragm resonance and to prevent ringing on transients. The rear of the diaphragm should radiate freely to the air.

\section*{Construction}

Following the guidelines mentioned above, the headphone design has been optimized for use with the amplifier in Fig. 1. A cross section of the headphon
ransducer is shown in Fig. 3 Cut four plates from a sheet of 3 mm acrylic, such as Perspex, to the size shown in Fig 4. Drill a matrix of 3 mm oles in all four plates which should b clamped together so that they can be
drilled simultaneously. A piece of Veroboard clamped on top of the plate makes a useful drilling guide. Drill ountersunk hole in one corner of each plate so that the head of a M2.5 or M2 surface. Roughen the surface of \({ }^{*}\) the plates and remove the sharp corner of the countersunk hole with fine wet and dry paper. After masking the plate as hown in Fig. 4, paint the surfaces and enerous coat of Aquadag. After fitting screws into the countersunk holes with lags under the nuts, the resistanc etween the tag and any point on the sistance is ge leater than 1oks. If the quadag. To prevent localised break down of the airgap in high humidit conditions, the Aquadag is painted with coat of clear polyurethane varnish lightly with fine wet and dry paper to remove the gloss which tends to stick to the diaphragm.
Cut four spacers, 0.8 mm thick, to the ize shown in Fig. 5 . The spacers can be constructed from any good insulating aminated to produce the required hickness using rubber contact adhes ve. This material is easy to cut an flexible enough to clamp the diaphragm around its entire circumference when sticking the spacers to the coated face of the plates, drill suitable countersunk holes for the diaphragm contacts. Place he two pairs of plates and spacers face o face and drill for the assembly screws,
To provide connections to the diaph ragm, the four spacers are painted with enerous Aquadag coatings as shown in Fig. 5. These coatings must extend to he inner edge of the spacer and into the clear of the mounting screw holes. After fitting the diaphragm contact screws heck that there is a resistance from the n tags to all points on the Aquadag contacts. wrapping film. From its behaviour it appears to be identical to Vitafilm 1,2, , After extensive experimentation with
high resistance coatings I found that the uncoated film, with its very high surface resistance, gave excellent results provided that the diaphragm contacts were
arranged as described. This method arranged as described. This method
removed one of the most difficult steps in headphone construction.
To assemble the diaphragm cut a hole somewhat larger than the plates in a rigid sheet of cardboard, stretch a piece and attach it to the cardboard with adhesive tape. When the film has been made wrinkle free, place a plate and spacer assembly on each side of the film, hold them firmly together and bolt the and diaphragm. Finally, cut the protruding diaphragm film around the outside of the assembly with a razor blade. To test the headphone units, connect the drive amplifier with the polarizing
potential set to its minimum value of 800 V and check that the diaphragm remains central. If the diaphragm attaches itself to one plate or oscillates at a low frequency it must be tensioned. This can be done by heating the
headphone assembly with a radiator or light bulb until the diaphragm wrinkles at which point it is left to cool.
After testing both units connect the leads to the headphones and insulate all exposed contacts with silicone rubber.
The drive units should then be enclosed in acoustic dampers constructed from envelopes of 6 mm foam plastic. These envelopes may be sewn around the edges of glued with rubber contact arrangement will depend on the preference of the constructor. The prototype used an acrylic bridge between two of the assembly screws which protruded
through the foam plastic dampers This through the foam plastic dampers. This
bridge was then attached to the headband from an old pair of headphones as shown in Fig. 6. The connecting wires between the headphones and amplifier should be less than 1.5 m long and minimize their capacitance.
With both transducers connected to the amplifier, increase the polarizing potential to just below the value which causes diaphragm collapse or airgap
breakdown. For the prototype a maximum potential of 1.3 kV was set by the onset of low frequency clicking sounds.

\section*{Safety}

Although the high impedance of the Although the high impedance of the
polarizing supply ensures that it is not lethal, an uncomfortable shock can be received from the plates at high output. The foam plastic envelopes and the insulation on the connecting leads must
be inspected at regular intervals. Provided that these precautions are taken


Fig. 6. Author's prototype headphones and power supply

(b)

Fig. 7. (a) Headphone frequency response without foam plastic dampers and (b) with dampers.
and common sense is exercised, th headphones are completely safe. How ever, they are not recommended for use by children.

\section*{Headphone performance}

Performance measurements were made with a 12.5 mm diameter B \& K concentre of the damper or the centre of the plate when the damper was not fitted. For absolute sound pressure measurements \(h\) system was calibrated with B \& K pistonphone.

Without the plastic dampers the 85 Hz see Fig 7 a resonance at abou Hz, see Fig. 7a, and a pronounce sients, Fig. 8a. Addition of the dampers produced a frequency response within \(\pm 5 \mathrm{~dB}\) between 40 Hz and 30 kHz with no overshoot on transients as shown in
Figs. 7 b and 8 b . Placing the microphone Figs. 7 b and 8 b . Placing the microphone \(6000 \mathrm{~mm}^{3}\) cavity with a 20 mm diameter orifice contacting the damper, extended the low frequency - 5 dB point down to

Fig. 8. Headphone response to \(20 \mu \mathrm{~s}\) pulses at \(1 \mathrm{kHz}(a)\) without dampers and (b) with dampers.
moved away from the centre of the headphone unit indicated that th diaphragm area was much flatter than shown in Fig 7b. The r.m.s. sound pressure produced by a 1400 V peak-to peak differential plate voltage at 100 H 5 kHz was 102 dB (rel. 0.00002 Pa ). were experienced with the uncoated diaphragms. When the polarizing potential is applied, the charge spreads over the diaphragm and the headphone output rises to its full value within a few
seconds. Under extremely dry conditions it is conceivable that the surface resistance may become sufficiently high to prevent charge spreading. If this ragm through the dampers should pro ragm through the dampers should pro-
vide a cure. It should be noted, however that even a fine piece of fluff bridging the diaphragm-to-plate gap will bleed away the diaphragm charge and reduce the headphone output.
wide range of music. The made with a formance is marked by great clarity and I have detected no faults. The acoustic output levels are more than adequate
for most listeners but some rock music for most listeners but some rock music The quality of the recordings and reproduction equipment is very important because all defects are heard much more clearly than with loudspeakers or
inferior headphones. This problem with inferior headphones. This problem with noted in ref. 1. However, with the best available recordings and good quality equipment, very impressive results are obtained.

\section*{References}

References
1. Wilson, J.P., High quality electrostatic
headphones. Wireless World Dec. headphones. W.ireless World, Dec. 1968 . design. Wireless World, Nov. 1971:
3. Pollock N Electron 3. Pollock, N., Electrostatic headphone
amplifier. Wireless World Circuit Ideas amplifie
1976.
4. Frederiksen, T.M., Howard, W.M. and Sleeth, R.S.. The LM differencing quad of \(\pm\) input amplifiers. 72, Sept. 1972.
5. Baxandall, P.J., Audio power amplifier design. Wireless World, Jan. 1978 .
6. Hunt. .F.V., Electroaco
University Press, 1954.


\section*{The author}

Neil Pollock studied mechanical en after grad and after graduating, spent three years work-
ing with a aircraft flight test instrumentation. Neil then gained a masters degree
for work on the design on aron for work on the design of aerofooil sections for transonic speeds. He also has an
interest in electronic and optical instrumentation for wind tunnels. Neil says his main hobby is designing unconventio-
nal mechanical and electronic devices nal mechanical and electronic devices
which avoid the normal textbook method. He also admits that, although interesting, his approach is no
standard method.

\section*{Transatlantic meteor} scatter?
Over three decades, amateurs have been striving to achieve two-way con-
tact across the Atlantic on 144 MHz by a tact across the Atlantic on 144 MHz by a
variety of propagation modes tron variety of propagation modes: tropos-
pheric ducting; double-hop Sporadic E; auroral reflections, etc. So far only "moonbounce" and the amateur satellites have yielded results. But a recent
determined attempt to get across by determined attempt to get across by
means of scattering from meteor trails came very near to success.
In a six-hour test at the peak of the Perseid meteor shower members of the
"Lizard Expedition Group", (G3SEK "Lizard Expedition Group"' (G3SEK,
G4ANB, G4ASR, G4DEZ, G4DG G8HDR, G8KQB and G80AC) operating G4DGU/P from Predannack Head on the Cornish coast endeavoured to contact the Canadian station VEIASJ operated by Andy McLellan in St John,
New Brunswick a distance of 4470 km . Signals were received in both direc tions, although no positive identification proved possible. The signals
recorded in the UK exhibited noticeable recorded in the UK exhibited noticeable decorrelation: spectral spread and maximum burst length of about 750 milliseconds was observed, with typical signal strengths of the order of \(0 \mathrm{~dB} \mathrm{~s} / \mathrm{n}\) in a bandwidh of 2.5 kHz . More detailed nalysis of the tape recordings may

\section*{"TEST"' not CQ}

The death of Wing-Cmdr John S̄cott Taggart, OBE, MC (News, Octobe
issue) has diminished still further small number of people who can claim to have held one of the old "threeletter" experimental (amateur) call signs issued before the outbreak of in 1920-21 he became the first owner of in 1920-21 he became the first owner of
the call 2 LR . In 1924, as publisher of Wireless Weekly, he joined forces with Wireless World when both journals offered to put the sum of \(£ 500\) each to support the RSGB in fighting a test case
if the Post Office enforced a new licence condition which stated: "Messages shall be transmitted only to stations in Great Britain and Northern Ireland which are actually co-operating in the licensees xuch experiments" - in other words a complete ban on random contacts or indeed any overseas contacts. The spirited opposition to this harsh edict led to a face-saving compromise by the
authorities: overseas contacts and general working were permitted provided that the British stations were carrying out "tests": what this soon came to mean in practice was simply
that British amateurs called "TEST" that British amateurs called "TEST"
and never "CQ," and this remained a feature of British amateur operation right up to the ban on all amateur operation imposed 40 years ago just


The death of Capt. S. R. Mullard (News, this issue) also marks a break with the first valves used by British

\section*{Amateur satellite}

\section*{progress}

The British UOSAT project ( WoAR April 1979) is making steady progress in spite of difficulties that have been experienced at the University of Surrey in Inding a second full-time engineer with the necessary practical experience to
work on the project. Small teams at Sheffield and Leeds universities, Marconi Instruments and Marconi Space and Defence Systems (Stanmore) have been making design studies for the these depend on the outcome of WARC79. Evaluation of solar cells indicates that five panel strings may be needed to supply the 14 V nicad battery. radiated powers (power in effective multiplied by antenna gain) of about 1 kW in the 432 MHz band will be needed to access the Phase 3-A high altitude, long-lifetime AMSAT satellite expected to be launched next Spring. This should
have a period of about 660 minutes with a apogee of \(35,000 \mathrm{~km}\) and perigee of some 1500 km and should be accessible from virtually any part of the world for at least some period each day. Down

\section*{Scanning the news}

The RSGB Sunday-morning news bulletins ("GB2RS") are being extended by the addition of a 7047.5 kHz a.m. transmission at 1100 hours local time, usually
from the station of Gordon Adams, from the station of Gordon Adams, Coverage is likely to be highly dependent upon "skip distance" although at present there is often virtually no dead zone. The transmission can be received by short-wave listeners having only
conventional "all-band" receivers There are now seven GB2RS transmissions on 3650 kHz on s.s.b. or a.m. from
different sites, eight s.s.b. transmissions
on 144.250 MHz and some 19 n.b.f.m.
transmissions on 145.525 MHz . FM News reports that the Home office has agreed in principle to a detailed plan for additional 144 MHz n.b.f.m. repeaters in the London area including GB3SL at Crystal Palace GB3WL at Hillingdon, GB3EL a
Havering Atte Bower, GB3NL at En Havering Atte Bower, GB3NL at En-
field. However, it is clear that groups are not being encouraged to apply for per mission to operate linear or cross-band repeaters.
A Dutch beacon station, PAoJTA on 148.82 MHz , is being operated as an switched on only during Epariods when such propagation conditions have been observed.
Amateur radio made news when
during the aftermath of hurricane "David" when a thath of hurricane amateur station was for a time the only link out of Dominia, and was used also by Government ministers to speak to
the stricken islanders. Amateur radio also provided emergency communications following the bad floods in India. One hears increasingly complaints "contests" now excessive number of contest that seem to take over the every weekend. There is strong feeling among those who do not want just to swap numbers that enough is as good as a feast. One wonders which national society will be considerate enough to
announce their intention of holding fewer rather than more contests?

\section*{In brief}

The Luxembourg amateur LXIDB, well known for moonbounce operation on 432 MHz , is now active also on this mode on 1.3 GHz including contacts with activity by Russian amateurs on the 1.8 MHz band and signals from the Baltic countries, White Russia, the Ukraine and the Moscow area can be heard most (Y21 to Y29) are due to be introduce soon in East Germany to replace the familiar "DM" - a pity since DM comes easier off the key than Y29.... Richard Thurlow, G3WW has now stations in 99 countries. ... Despite the introduction of multiple-choice questions in the May Radio Amateurs' Examination most candidates had to wait until early September to learn
whether they had passed... Angus Taylor, G8PG received strong support for his plea for the introduction of a novice licence in the UK (letters, June,
p82) with more than 250 people indip82) with more than 250 people indicating their support for the proposal.
. The Science Museum GB2SM station now includes a special collection of miniature h.f. equipment originally designed for "clandestine and infiltration"" purposes from about 1940 up to about
1960 . 1960.

Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues for about the same price.

Our new 169 is a tough, lightweight,
battery-powered digital multimeter for use in the field or on the bench. If is a 3 -digit, full 5 -function DMM with respectable \(.25 \%\) DC accuracy

Its low-parts-count, high-efficiency design keeps power consumption to a minmum for longer component years.

All 5 functions are fully proteted - 1400 V peak


\section*{Is this the end for Analogue} \(2 A(250 V)\) on DCA and ACA The fuse externally accessible for quick replacement Extensive vibration stress-testing assures the 169 will stand up to all the mechanical shock and abuse normally associated with tough applications.

Cost-conscious ease of maintenance is so thoroughly designed into the 169 that 1 Ot? only one calibration adjustment a year is required. That adds up to a cost-of-ownership no other competitive DMM can touch. For example, the 169 needs only one battery change
per year at a cost of about \(£ 1.50\).
When you factor in features like function and range annunciation right on the
display, auto-zero, auto polarity, \(60 \%\) larger display than other DMMs and the easy-to-read, colour coded front panel, we think you'll get the point.
No analogue meter or DMM No analogue meter or DMM can match the pricel performance of the new 169 . It costs \(£ 99\) (plus VAT) For information on the 169 or any Keithley DMM call (0734) 861287
Telex: 847047

\section*{KEITHILEY}

Ex stock
WW - O98 FOR FURTHER DETAILS

Boithey Instruments Ltd
GB-Reading, Berkshire RG2 ONL UNTTED KINGDOM
(0734) 861287 Telex: (851) 847047
Kolthley Instruments GmbH

\section*{Heighofstrasse 5
\(0-8000\) München 70} 0-8000 München
(089) \(714-40-65\)
Telex: 521 Keithly Instruments SARL 44, Rue Anotoments SARL F-91121 Palatiseau Cede F-91121 Palaiseau
\(01-014-22-06\). Telex: (842) 20418

\section*{NRDC and NCC announce the BRITISH MICROPROCESSOR COMPEIITION}

A competition for the best invention incorporating a microprocessor

\section*{£20,000 total cash prizes First prize \&10,000...}
.. and NRDC will give favourable consideration to investing up to \(£ \frac{1}{2}\) million in any of the winning projects.

The competition closes on 14 December 1979. For full details, including entry form and rules and conditions, complete the coupon and post it to:

British Microprocessor Competition,
c/o The National Computing Centre Ltd,
Oxford Road,
Manchester, M1 7ED.

\section*{Sponsored by the}

National Research Development Corporation r----- and The National Computing Centre

To: British Microprocessor Competition.
Please send me full details and entry form for this competition.
BLOCK CAPITALS PLEASE
Name
Address \(=\)

\section*{NEWS OF THE MONTH}

\section*{WARC 79 starts in dissension}

Influence of the non-aligned nations
The opening of the World Administrative
Radio Conference at Geneva was delayed for three days because the delegations from the 148 nations represented were unable to agree
who should be chairman of the ten-week event. This delay and dissension was "unprecedented" according to one official of the which has organized the conference (see October issue, pp. 51-53 for background). The disagrement seemed to bè not so much an
East-West matter but East-West matter but a result of the fun-
damental differences between the interests of the rich industrialized nations of the northern hemisphere and those of the deve-
loping countries of the southern hemispere loping countries of the southern hemisphere
- the so-called North-South struggle. The poorer part of the world was represented
argely by the group of politically non year at a political summit at Havana this year at a political summit at Havana. This
group held a meeting of its own at Geneva roup held a meeting of its own at Geneva,
and at one point it was thought these nations would force in their own candidate as chairman because their number would en sure a majority in a vote.
The question of who is
The question of who is chosen as chairman er, first because WARC highly sensitive matpattern of radio use - notably it pattern of radio use - notably in frequency
allocations - for the next twenty years, and secondly because the way the chairman controls the discussions leading to decisions is obviously influenced by his background
predilections and any political pressures to preairections and any
which he is subject.

\section*{British c.b. "could not be on \(27 \mathrm{MHz}{ }^{\prime \prime}\)}

As this issue is published Parliament is
returning from its summer recess and the all-party committee of MPs which is pressing for a citizens' band in the UK almost cer-
tainly will be meeting the Home Office for tainly will be meeting the Home Office for
further discussions. Meanwhile, a report on c.b. prepared by the Home office's Radio Regulatory Department has been sent to the
Home Secretary, Mr William Whitelaw for Home Secretary, Mr William Whitelaw, for
consideration and, according to the Citizens' Band Association, some "important admissions" have been made by the Home Office.
These are, first, that no change in the law is necessary for them to authorize c.b. in the UK; second, the current WARC 79 in Geneva
is irelevant to whether or not the British is irrelevant to whether or not the British
Government legalizes c.b. purely within the UK; and third, it is really up to the Government to show why c.b. should not be intro-
duced rather than up to the pressure groups duced rather than up to the pressure groups
to show why it should be. An important point to come out of a
meeting earlier in the year between the committee of MPs and the Home Office was,
according to the CBA, that thoth unanimous in agreeing that any c.b. in Britain could not be on 27 MHz . The Home Office "took the view that the rapid growth
of illegal 27 MHz use had no bearing on the case for legalization of another frequency since 27MHz users were criminals and shoul be treated as such. The Committee did not
press the point at the meeting but both they press the point at the meeting but both they
and the CBA believe that if illegal 27 MHz use
is is simply ignored it will not go away but may
cause a delayed decision to be in favour o cause a delayed decision to be in favour o
27 MHz - against the wishes of almost all parties - simply because too many peopl will be using it.'
- Pye Tele
Pye Telecommunications, whose uh.f./f.m. citizens' band equipment in Aust
mending the u.h.f band for any c.b. system in Britain. Their reasons are: u.h.f. is more Suitable for the high population density in the more users in a given spectrum space be suppression of weaker signals - the "cap ure effect"; avoidance of interference with ment; avoidance of poor grade service ex perienced on 27 MHz due to congestion esulting from long-range propagation skere effect; avoidance of harmonic inter-
erence with other radio communication users - police, fire, ambulances, etc; avoidance of the problem of re-allocation of
existing users, which would make 27 MHz c.b. exisw ang users, which would make 27 MHz c.b.
slow and costly to implement; and u.h.f. has high quality transmission and reception as well as predictable range and channel re

\section*{ERA NAME CHANGE}

On September 1, the Electrical Research
Association Ltd changed its name to ERA Association Ltd changed its name to ERA the extensive services which they now provide for clients throughout the world. ERA was incorporated in 1920 to under-
take co-operative research in the electrical ane co-operative research in the electrica,
industry and was in fact one of the first UK industrial research associations to be formed. In 1969 it became the first such body to it relinquished all its remaining government grant aid. This year the company celebrated its first decade as an independent contract research organisation with the announce-
ment of record results - an income totalling \(£ 2,957,230\). Today ERA employs 300 staff of which 160 are technically qualified.

Early candidates proposed were Derek Rose of New Zealand, T.V. Srirangan of
India and Henry Kieffer of Switzerland, but none of these proved to be acceptable to meeting on September 27 , the heads of the delegations agreed on R.J.P. Severini of Argentina, and the plenary assembly of the onference was able to start on the same day with Mr Severini in the chair.
Member countries of the ITU had submit ed some 14,000 proposals for revisions to the existing Radio Regulations (the UK propo sals are summarized in the July 1978 issue, p.47, and June 1978 issue, p.57). Preparatory
documentation for the conference amounted documentation for the conference amounted were printed in three languages. In addition the 148 national delegations taking part, 38 iternational organizations (such as the EBU and the OIRT) sent along their observers. headed by D.E. Baptiste of the Radio
Regulatory Department of the Home Office.

Prestel to test international market
Britain is to begin experiments with an international viewdata service later this year.
Mr Peter Benton, managing director of PO Mr Peter Benton, managing director of PO
Telecommunications, said when he anTelecommunications, said when he an-
nounced the trial, "We are not yet certain that a full Prestel international service would be a viable proposition, but there has been
sufficient interest in the prospect to justify sufficient interest in the prospect to justify
launching a market trial which, as well as giving us evidence of demand, will give us practical experience in resolving the many
technical, social and legal problems tecsnical, social and legat problems
associated with moving Prestel from the national to the international arena." It is hoped It is hoped that the trial will identify the
kind of information which today's kind of information. which today's
businessman, or government official, needs businessman, or government official, needs
to know, but cannot obtain quickly, so that
the new service could then provide this the new service could then provide this information almost instantly. The trial will be
open to selected users in up to seven coun-
tries - the \(u K\) tries - the UK, Australia, the German Switzerland and the United States. Information offered will include stock markets, currency exchange rates, airline schedules,
shipping news shipping news, commodity prices, economic
analyses and company news, drawn from many parts of the world. Logica Ltd, who
carried carried out an evaluation of the potential market for the Post Office, will be assisting in
implementing the trial which is expected to last about one year. Discussions are now taking place with the countries' telecom-
munications authorities, information promunications auth orities, information pro-
viders, and the tv set manufacturers who will be needed to supply a few hundred terminals
required for the trial.

\section*{Post Office comes under the knife}

Sir Keith Joseph, Secreary of State for
Industry, announced at a press conference in Industry, announced at a press conference in
London on September 12 that the ment intended to separate the Post Office into wwo Corporations, one for posts and giro, and the other for telecommunications. In
addition, he added that they would also begin consultations "with a view to early relaxation of the operation of the Post Officices's telecommunications monopoly." This fol-
lows discussions (see p. 73 September 1979 issue) in the House of Commons and the
House of Lords on points relating to the House of Lords on points relating to the
monopoly, raised in the Carter Report (see monopoly, raised in the Carter Report (see
p.5l, September 1977 issue).
"It is now two years," Sir Keith said, "since "It is now two years," Sir Keith said, "since Post Office should be divided into two inde-
pendent Corporations, one for posts and giro
and the second for telecommunications. I have now been able to consult the Chairman of the Post onice,
National Council and other interested parties, including the Trade Unions." He continued, saying that there was a broad meas-
ure of support for the proposed division, even ure of support for the proposed aivision, even
though half of the Trade Unions immediately concermed preferred a single Corporation to
be retained. The govermment had come to the conclusion that the balance of advantage
was strongly in favour of implementing the Carter Committee's recommendation. The
two main businesses were entirely different two main businesses were entirely different
and each needed its own independent board. The gover.ıment, he said, agreed with the Carter Committee's view that separation was an essential step towards improving the
effectiveness of both businesses. effectiveness of both businesses.
Legislation would be required t
new telecommunications corporation, but it
was unlikely that this would come before the was unlikely that this would come before the
end of next year, Sir Keith said. However, he end of next year, Sir Keith said. However, he
hoped that the Post Office would start to
effect as effect as many changes as possible before the

\section*{New Braille}
processor developed
A new type of word processor has been
developed by Micronex Ltd for the Royal developed by Micronex Ltd for the Royal
National Institute for the Blind (RNIB). The
processor. called the processor, called the BDET-2940AN Braille
Display and Editing Terminal, is a small self-contained system that is capable of canning braile pages produced on normal machine readable form for editing and reproduction. Once captured by the scanning process, the 29 -line by 40 -character text page
is presented as a \(20 \mathrm{in}(50 \mathrm{~cm})\) raster-scan graphics display for editing and/or reformatting utilizing the braille equivalent of
word processing. Processed text can then be word processing. Processed text can then be
output to a braille line printer or recorded on a special cassette tape. The BDET also includes a hraille keyboard which may be used
for keying transcribed braill into the diplay for keying transcribed braile into the diplay
without using a writer.
An optional floppy-disc unit permits An optional floppy-disc unit permits
several volumes of braille to be stored and can enable weekly publications, such as the
braille Radio Times. which demand a fast braille Radio Times. which demand a
turn-around time, to be prepared rapidly,
ding to Sir Keith's time scale, would begin ding to Sir Keith's time scale, would begin would take two to five years. He was shortly to begin consultations with the Post Office he unions, the manufacturing industry an the subject of the PO's exclusive rights to the supply of apparatus for connection to the
main telecommunications network, and main telecommunications network, and hoped to have detaile proposals by early
next year. Abolishing the PO's monopoly on telecommunications would allow private
manufacturers, both British and foreign, to manufacturers, both British and foreign, to
supply equipment for connection to the main network. This would obviously include quipment such as telephones, telex machines and computer terminals, but use telephone answering devices, radio telephone systems, slow-scan tv transceivers
and other video units, of any manufacture, with the network
The Post Office chairman, Sir William
Barlow, who has been tipped as the eventual
ead of the telecommunications corporation, because he thought that the organisation ould be more manageable as two separate units, but he had \(r\)

\section*{The unions' views}
r reactions from the unions. Mr Tom Jackson, ffice Workers, said that he was saddened to ee the "destruction of a great national
nstitution", and claimed that it would lead to wasteful competition. He disagreed with Sir Keith that the separation would not raise prices, and said that it could lead to the
import of "junk from abroad". Mr Brian tanley, general secretary of the Post Office Engineering Union said that the POEU be lieved that the separation would benefit staff
and customers but it did not think it a good dea to open up the telecommunications business to private competition. The Societ
Civil Servants promised to vigorously of Civil Servants promised to vigorously
resist moves to split the two services and the TUC is also promising all-out opposition to the proposals. The chairman of the Post
Office Users National Council, Mr John Office Users National Council, Mr John
Morgan, said however that the move to Morgan, said however that the
separate the services was overdue.

\section*{Decca i.I.s. for the R.A.F.}

Obsolescent instrument landing systems at
31 R.A.F. airifields are to be replaced by Decca 81100 equipment - the company's first ven ture in the landing system market. The 81100
is a version of the American Wilcox i.l.s., a system which has proved reliable in its two years of service at U.S. airfields. Decca has outside North America.
II..s. has been the standard radio aid for many years, having been used in one form or nother since World War II. It has bee its most exotic forms, is good enough for completely 'blind' landings. Readers wil recall that, last year, the International Civil
Aviation Organization reached a decision on Aviation Organization reached a decision on
the microwave landing system (m.l.s.) to be used in the future. This will go into service during the next few years, but ICAO have
insisted that the older, v.h.f. and u.h.f., i.l.s. will still be used until at least 1995, alongside m.l.s. at some locations. The equipment used in an i.l.s. consists of the localizer, which
defines the horizontal approach path, a
glide-path transmitter and marker beacons, nautical miles and 3,500 wht from the is funway hreshold. Monitors assess the radiated signals from each element of the arrays and
in the far field, switching off or to standby in in the event of failure.
One problem of i.1.s. localizers which is
reduced in effect by the new equipment is the seduced in effect by the new equipment is the eyond the stop end of the runway. Narrow eams need large arrays and the dipoles plus-parabola type of antenna previously
used occupied a good deal of space vertically, as well as horizontally. Large objects in an
aircraft's take-off or overshoot path ane not aircraft's take-off or overshoot path are not considered a good idea, as a general rule, and
te array of log. periodic elements in the new design do something to reduce the height of he obstacle.
A further benefit of the design, which is
odular in concept, is that installation time oduar in concept, is that installation time weeks to about nine. Maintenance time is also reduced.


\section*{British Standard revisions}

The British Standards Institution has revised
the standard B3192 covering safety requirements for radio and television trans-
mitting equipment. BS 3192 was first mitting equipment. BS3192 was first
published in 1968, but with the new revisions, which relate only to transmitters and auxiliary apparatus operated under the
direction of skilled personnel it is direction of skilled personnel, it is now
identical to the International Electrotechnical Commission Standard, IEC publication.
215. This standard deals with precation 215. This standard deals with precautions
against electric shock, skin burns, high temperatures and fire, explosion and implosion, harmful radiation and other miscellaneous
hazards. It gives design hazards. It gives design and construction
requirements to ensure the safety of person requirements to ensure the safety of person
nel both under normal and some abnormal operating conditions, and when carrying out
routine adjustments, fault-finding and reproutine
airs.

A new standard, BS CECC 30600 - harelectrical components under the sectional pecification, fixed ceramic capacitors, type - has just been published. It specifies the ratings and also the inspection requirements for fixed ceramic dielectric capacitors with a
defined temperature coefficient (dielectric type), intended for use in electronic equipment. This includes leadless capacitors but
excludes those excludes those capable of carrying high r.f.
currents and multi-layer ceramic chip
capacitors.
Successive editions of the BSI specification
for safety ment have added to the scope of the standard, which was originally only for domestic radios. Now it is entitled BS415 -
safety requirements for

\section*{Sinclair Radionics changes}

Clive Sinclair has left the company he \(\begin{aligned} & \text { means bowing out from the electronics } \\ & \text { founded, Sinclair Radionics, well known to } \\ & \text { scene. He has formed a new company, Sincl- }\end{aligned}\)
founded, Sinclair Radionics, well known to
readers of this journal for its kits, calculators and Microvision miniature television set. He has resigned all his executive responsibilities
with the firm but still remains with the firm but still remains a minority
shareholder. The majority of the shares, \(73 \%\) is owned by the National Enterprise Board which invested \(£ 4.5\) million in the company.
However, the NEB has sold the Microvision and calculator parts of the organization to Binatone International for \(£ 1\) million and it plans further sales in the future. New
chairman and managing director of Sinclair chairman and managing director of Sinclai
Radionics is Dennis Taylor, former managin Radionics is Dennis Taylor, former managin
director of Hewlett Packard in the UK, wh
has been on the board of has been on the board of the Sinclair com pany for about a year.
But the indefatigable Sinclair is by no
 air Research Ltd, at Cambridge, which will evelop new products, either on behalf \({ }^{\text {of }}\)
outside companies to which they will be licensed, or, in cases where no suitable licensec exists because the product is too
advanced, on behalf of Science of Cambridge td. This last-mentioned company is also Word by Clive Sinclair, and, as Wireles World readers will be aware, produces
computers for the hobbyist market. One of the most interesting development being undertaken by the new company is lat television tube, for which a patent ha nder contract for the NEB and is funded, a EA00,000 per year, partly by the NRDC and
partly by Sinclair Radionics Ltd. The conpartly by Sinclair Radionics Ltd. The con-
ract will run for six months while negotia tions are being made with a televisiog tube anufacturer. There is also a computer project; a new pocket tv set using a conven-
tional miniature tube prior to any flat tube becoming available; a novel form of elec ronic motor aimed at the potential electrical vehicle market; and a new instrument.
Sinclair Research intends to work with various manufacturing firms, acting as wheir
research departments. It has already made research departments. It has already made
exclusive arrangements with companies in the field of instruments and computers, and
"negotiations are in progress in other fields."

Tektronix reports good year Tekronix Inc. reported a \(36 \%\) increase in earnings for its 1979 fiscal year - which
ended in May 1979 - with \(\$ 77,151,000\) (about ended in May 1979 - with \(\$ 77,151,000\) (about
\(£ 38,555,500\) ) compared with \(\$ 56,846,000\) (about \(£ 28,423,000\) ) last year. Sales were \(\$ 786,936,000\), up \(31 \%\) from \(\$ 598,886,000\) a year
ago, with \(62 \%\) of the total being in the US.

Lord Scanlon, formerly president of the Amalgamated Union of Engineering Workers, in his chip during a recent tour of the Siliconix manufacturing plant at Swansea. Afterwards he said that he could not help being impressed by the technology and, on the question of whether or \(n\) microprocessor technology will cause unemployment, he "wondered whether industry as a
whole was expanding quickly enough to take advantage of the many benefits and employment opportunities which silicon chip technology was creating,",
Siliconix are having an extension built to more than double their manufacturing are

\begin{abstract}
lectronic and related apparatus fo household and similar general use - and
includes monochrome and colour \(t\) receivers, radio receivers, clock radios, stere amplifiers, record players, music centres, lectronic musical instruments. Auxiliar equipment provided for use with this appa ratus is also covered, e.g. microphones, oudspeakers, cable-connected remote con-
rol devices and battery eliminators. Requirements are arranged to ensure that
the apparatus is designed and constructed so as to present no danger either in normal use as to present no danger either in normal use
or in a faulty condition. In particular it rovides for personal protection agains ionizing radiation, implosion, mechanical instability, moving parts and fire. The standard may also be applied to profession ectronic apparatus likely to be used by priate standard. An appendix gives supplementary requirements for splash-proof elec-
tronic apparatus. The new revision brings the British Standard more closely in line with the orresponding International Standard, IEC publication 65 .
\end{abstract}

\section*{Radio Luxembourg} by satellite?

Radio and television programmes may be
broadcast from a European satellite for which Radio Luxembourg has commissioned a design study from British Aerospace porate development of the European Communications Satellite (ECS), and could utilize the same basic satellite platform as ECS but with a different electronics payload. British Aerospace say that this "could be the first
direct-broadcast satellite to enter service in the world," although of course there are, and have been, a number of experimental broadcasting satellites in operation already:
- Meanwhile, a further three ECSS for European Space Agency from British Aerospace Dynamics Group. Worth \(£ 37\) million, the order brings to five the total number of procurement ever made in Eurgose Thetlilite procurement ever made in Europe. The five
satellites will provide Europe with an indigenous communications system for relaying telephone, telex and television traffic. (For details see December 1978 issue, p .63. .) The
communication coverage will extend from the southern and eastern shores of the Mediterranean, including the Atlantic
Islands, and to Iceland and Scandinavia in the north.
All five satellites are to be launched by the
Ariane launcher Ariane launcher (soon to have its maiden
flight) from the equatorial site flight) from the equatorial site at Kourou,
French Guiana. The first is scheduled to be placed in orbit in 1981, followed by the
second in 1982. These wo will provide the second in 1982 . These two wowled provide the continuity of service satellites will provide
citio the 1990s. Each satellite is expected to have a minimum
operational life of seven years.

\section*{Marconi doppler velocity sensor for Boeing 737}

Doppler velocity sensors, made by Marconi
Avionics of Basildon, have been ordered by Avionics of Basildon, have been ordered by
Boeing for installation in Lufthansa's 737s. Boeing for installation in Lufthansa's 737s.
The AD660 DVS is the newest in a succession of doppler ground-speed sensing equip-
ments, which started with the AD2000 ments, which started with the AD2000
"Green Satin" used in the old \(V\) bombers Groen Satin used in the old \(V\) bombers
shortly atter the war. Ground (as opposed to air) speed measurement was originally in-
tended to do just that, but the potential was tended to do just that, but the potential was
such that the data from the equipment was such that the data from the equipment was
used in navigation systems, in conjunction
with highly-accurate compisse with highly-accurate compasses and inertial
sensor references. With the introduction of sensor references. With the introduction of
the AD660, the cost of using the equipment purely as a ground-speed sensor is low enough to be practicable, although it
inevitably be employed in a wider role. The new design is in a single unit, whic composed of antenna, semiconductor \(\mathrm{Tx} / \mathrm{Rx}\), and computer, the whole being about the size
of an attache case. Since the antenna is a of an attache case. Since the antenna is a
microstrip type, it is flat and can be adapted to the shape of the aircraft skin. The small
size of the antenna also Four time-multiplexed beams are radiated
fore-and-aft and laterally, angled towards the fround. Since only three beams are needed
fred for sessing ground speed, the fourth is redundant when the aircraft is flying level,
serving only to provide a consensus with the serving only to provide a consensus with
other three. With alterations in aircraft attitude in pitch or roll, it is possible that one
of the beams would be directed away from of the beams would be directed away from
the ground, whereupon the three remaining the ground, whereupon the three remaining
beams would continue to provide the necessary information.

DVS, being usable down to 10 knots, can be used to measure taxy speed, and the equipment will be used in the 737 to provind shear, which is effectively a rapid change in wind speed, often causes pilots to respond
incorrectly to changes in the rate of descent incorrectly to changes in the rate of descent tected by the ADD60, enabling piliots sto adju
the engine controls in the correct sense.

\section*{HP's long-awaited multi-station}

\section*{processor development system}

Hewlett Packard recently announced their
64000 system which is reckoned to be the most advanced logic development package currently a vailable. The system comprises up to six desk top "workstations" which share a
20 to 120 Mbyte hard disc store and a printer. Each workstation incorporates a 16 -bit n.m.o.s. host processor, 64 Kbytes of r.a.m.,
16 Kby .es of r.o.m., \(/ \mathrm{O}\) control sand display facilities. Software options include a choice of assemblers and compilers, and ten card real-time emulators, a p.r. \(m\) prons such as real-time emmiators, a p.r.o.m. programmer
and a PASCAL compiler. The system allows up to osix operators to each use a workstation simultaneously and independently without
changing discs. As well as developing and changing discs. As well as developing and
debugging hard and software, the operator can write code, emulate hardware and carry
out logic analysis.

Death of Stanley Mullard Stanley Robert Mullard M.B.E. (MIL), one of
the pioneers of the UK radio industry, died on Septembers 1 at the age of 95 . Stanley Mullard was born in 1883 and after leaving school and attending a Sussex poly-
technic, joined a firm of electric lamp manufacturers. He continued his studies at
the Northampton the Northampton Institute (now the City
University) and became a director of the University) and became a director of the
company when he was only 24. Later he joined the Ediswan Company and in 1915, while working in the lamp research
laboratory he developed the "Pointolite" arc lamp which was used in projection appratus for over 40 years.
At the start of the first world war Stanley
Mullard enlisted in the Engineers' of the Royal Naval Reserve, but continued of the Royal Naval Reserve, but continued
his work at Ediswan at the Admiralty's

A very useful feature on the workstation is A very useful feature on the workstation is
a of uncommitted or "soft" keys whose
function during development is labelled on fhe v.l.u. This This apporoachen, combined with
the
directed syntax directed syntax, greatly reduces errors The cost of the system depends on the
number of stations and options, but \(£ 17,000\) to \(£ 50,000\) is a general guide.
Shortly after Hewlett Packard's launch, Livingston Hire demonstrated their faith in the system by announcing themselves to be
the first purchasers in the world of the equipment. The 64000 will support Livingston's microsystems rental service which has been in operation for about a year. This
facility enables prospective purchasers to evaluate the system thoroughly and gain practical experience before parting with the
purchase price.
request. His interests by then extended to
radio valves and his wide knowledge of glass technology and vacuum techniques enabled him to make valuable contributions to the equipment.
In 1916, as a lieutenant in the RN Volunteer Reserve, he was posted to the RN Air Service
and put in charge of a special valve aboratory at Imperial College, London. It was largely due to his participation that the manufacture of silica-type power transmit-
ting valves became practicable by the end of ting valves became practicable by the end of
1919
By September 1920 an order for 250 valves raised the capital required for him to
form the Mullard Radio Valve Company form the Mullard Radio Valve Company.
Demand for small receiving valves quickly Demand for small receiving valves quin, in
exceeded output time and again,
particular with the introd particular with the introduction of the BBC's
London transmitter, 2LO, until by London transmitter, 2LO, until by 1924
production had reached \(21 / 2\) million a year. By demonstrating that reliable valves could be
made cheaply Stanley Mullard helpal


Marconi's AS660 ground speed doppler. The wo boards are mounted in the case, directly on the printed-circuit antenna
switching unit is in centre of case

\section*{Power f.e.ts aid radio navigation}

Adney Automation Ltd, a Sussex-based
company, claims to have made a majo company, claims to have made a majo breakthrough by incorporating
v.m...s. power f.e.ts in the output stages of maritime radio transmitter beacons. The
beacons, known as orb, are intended to give positive radio navigation guidance at harbour entrances. They are entirely off-shore based and rely upon solar cells or wind to provide the transmission power. The use high current v.m.o.s. f.e.ts, type VN64GA, in the output stages, allows the beacon to operate more efficiently and reduces the
overall size and power consumption of the unit. This improvement enables maritim radio beacons in the 285 to 315 kHz band to periods while giving an acceptable power output over a wider area for positive idenification and navigational guidance. So far Poole and Chichester are the only harbour
to benefit, but already the Poole harbour master has reported beacon reception a
materially to lay the foundations of the materially to lay the
British radio industry.
Further increases in production and the establishment of the Mullard Wireless Co., to handle marketing and distribution, were
followed by the need to move to a larger factory at Mitcham in Surrey. Eventually the call for research facilities beyond the scope of such a young company led to the
establishment in 1924 of close links with N establishment in 1924 of close links with N.V. years Philips acquired all the shares in the company.
In 1929 Stanley Mullard resigned as tinued as a director actively interesting himself in the company's affairs until its golden jubilee celebrations in 1970. He lived o see the small venture he founded grow to
an organisation employing more than 11,000 people and occupying a leading place in the
world's electronic industry

\section*{Slow counters}

The production of clean logic signals using an input channel barrier for us with open contacts may require an
opto-isolator to avoid earth loops, a low-pass filter to remove noise and contact bounce transients and a trigger circuit to clean up the resulting slow edges. A response time of 5 to 10 m exceeds the bounce time of most unwanted noise. Often the power supply is filtered and suppressed but the cost of such precautions can be significant. Th author of this article outlines an approach which exploits the fact that the
switching speed required in a given control application is often considerably less than that already available and maintains that such methods can be cost-effective in small systems.

LOGIC INPUT SIGNALS sometime come from open contacts or their equivalent and can be severely contaminated by the effects of contac bounce and noise, to which circuits with counters are particularly vulnerable

Fig. 2(a). Counter cell using NAND gates. Points marked " \(a\) " are joined together as are those marked
\(B=p . q . a+p . b\). Input \(q\) is used for cascading only. i.e. \(q=1\) in the basic form
see Fig. 2(b). Sequence diagram for Fig. \(2 a\) when \(q=1\).
 voltages

Designers accustomed to relatively slow relay systems sometimes failed to appreciate this problem, which led to many malfunctions in the early days of development and gave solid-state To a lesser extent, signal races with the logic itself contributed to anomalies which were difficut to diagnose

oncerns mainly the i.c. designer uppearing to the user primitip on input rise time. Fig. 1 shows a basic counter cell using ype of circuit will work with almos ny general-purpose relay and depend upon the fact that the momentary in erruptions when a changeover contact perates, are too short to be 'seen' by th


Fig. 1 (a). Divide-by-two cell using relays. The events counted are the operations of \(P\). Changeover contact \(r\) is on relay \(R\) and so on. The basic logic is

Fig. 1(b). Sequence diagram for Fig. 1(a). The duration of each mark or space of displacement of signals \(r\) and s from signals \(R\) and \(S\), representing relay coil
magnetic circuit of the relay switched magnetic circuit of the relay switched
Such interruptions, or situations whe for example neither \(p\) nor \(\overline{\mathrm{p}}\) is true, are typical of the race hazards which are so important in the design of fast logic. In the Fig. 1 circuit they can be disre ference and bounce can be disregarded namely the slow response of the active devices.

A slow-counter cell
Fig. 2 shows an electronic analogue of the Fig. 1 relay cell; the inversions of \(p\) and \(b\) are achieved by using the out puts of gates 1 and 3. If the com-
ponents \(R\) and \(C\) are omitted, the circuit is similar to a 6 -gate circuit given by Zissos \({ }^{1}\), who uses it as an example for hazard analysis, building up to a 14-gate circuit with a very low probability of
malfunction. Lewin \({ }^{2}\) treating a similar malfunction. Lewin \({ }^{2}\), treating a simila considering hazard corrections.
If the Fig. 2 circuit is assembled without the R and C components it is un workable. Several hazards or races can
be deduced and observed especially if the signal applied at \(p\) has slow edges The RC delay required for correct
the \(p\) signal edges. For example if A
changes from 0 to 1 on a transition of \(p\) point ' \(a\) ' will some time later rise to \(a\) voltage high enough to switch gate 2 (assuming its other inputs are high) and this delay must exceed the time taken
for the undelayed switching actions caused by the p transition to be effectively completed.
The circuit is conveniently implemented using c..m.o.s. gates because of their high input resistance and symme-
trical transitions, though it will work with t.t.1. if extra transistors are used to match signals \(a\) and \(b\) into gates 2 and 3 . Assume that, for c.m.o.s. on 12 volts, gate switching takes place between
input levels of 4 V and 8 V . The time that signal \(p\) takes to cross this gap is virtually the maximum period of danger, since other transitions are shortened by gate amplification and the minimum yalue of RC is that sufficient to prevent
a or b rising by 4 V (or falling to 8 V ) in a or b rising by 4 V (or falling to 8 V ) in
this time. With fast edges at p , the circuit is thus usable up to the frequency where the undelayed switching times are no longer negligible, say 1 MHz , but the main interest is for low
speed applications. speed applications.
above 8 V (or below 4V) long enough for the signal a or b to reach 8 V (or 4 V ). Thus a particular choice of RC fixes
both the maximum rise-time and the both the maximum rise-time and the
minimum half-period of the counted signal. It is possible to achieve reliable operation over a limited frequency range with a sine-wave at p of 12 V pk-to-pk (centred on perhaps be useful for timing from could 50 Hz mains, but in most l.f. applications the provision of adequately fast \(p\) edges presents no difficulty.
The sequence diagram, Fig. 2(b),
shows two points shows two points of interest. First,
when the frequency is low enough for gate switching times to be negligible, the signals A and B are synchronous with \(p\), despite the delays of \(a\) and \(b\). Second, the transitions of a occur only when \(p=1\), i.e. when gate 2 is off. Simi-
larly the transitions of \(b\) occur when 1 and 3 are off, thus these slow edges do not create slow gate output transitions, which could cause excessive dissipation.
Apart from making the circuit work i.e. circumventing the hazards, the RC delays can give it the same kind of immunity to contact bounce and inter-
ference as the relay circuit of Fig. 1 . Although a short pulse on signal line \(p\), B, it will be filtered from a or b, and so prevented from corrupting the latches, i.e. altering the stored count. A test made using \(\mathrm{RC}=10 \mathrm{~ms}\) and a \(40 \cdot \mathrm{~Hz}\) square wave input to \(p\) showed that reliable division was obtained even in
the presence of full-amplitude square interference pulses, of either sense, in excess of 2 ms duration.
It is not essential to use the particular gates shown in Fig. 2, many different
arrangements are possible and the


Fig. 3(a). Decade counter using four
\(p_{o}=p, p_{1}=A_{0}, p_{2}=B 1\),
\(p_{o}=p, p_{1}=A_{o}, p_{2}=B 1\),
\(p_{3}=A_{1}=A_{2}+B_{2}\)
\(q_{1}=a_{3}\) remaining \(q=1\)
Fig. 3(b). Binary read-out from Fig transition of input \(p\).

Fig 4. 12-counter using four Fig. cells with interconnections; \(p_{0}=p\) \(p_{1}=B_{0}, p_{2}=B_{1}, p_{3}=A_{2}+B_{2}, p_{2}=a_{3}\) remailar to Fi . \(3 \mathrm{~b} u\) sing \(2^{3}=B\) similar to Fig. 3b using \(2^{3}=B_{3}\),
\(2^{2}=B_{z} 2^{1}=B_{1}, 2^{2}=B_{c}\). Readouts change on \(1-0\) transition of input \(p\).
\begin{tabular}{|c|c|c|c|c|}
\hline Count & \(2^{3}=B_{3}\) & \(2^{2}=B_{2}\) & \(2^{1}=B_{1}\) & \(2^{0}=B_{0}\) \\
\hline 1 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 & 0 \\
3 & 0 & 0 & 1 & 1 \\
\hline 4 & 0 & 1 & 0 & 0 \\
5 & 0 & 1 & 0 & 1 \\
6 & 0 & 1 & 1 & 0 \\
7 & 0 & 1 & 1 & 1 \\
\hline 8 & 1 & 0 & 0 & 0 \\
9 & 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

number of gates in each path is not criticald Fig. 10 shows one of four possible circuits based on the 4539 (Motorola) which is usable in most configurations and provides a reset input. Component values are shown for \(\mathrm{RC}=4.7 \mathrm{~m}\)
Interconnection of cells.
An obvious application for the Fig. 2 circuit is to provide a reliable push on-push off function from an opencontact push button, connecting it to \(p\) tions can be provided by interconnecting several cells. If Fig. 2(a) is
compared with a JK flip-flop used to compared with a JK flip-flop used to divide its clock frequency (setting
\(J=K=1\) ) it will be seen that the signal \(\mathrm{J}=\mathrm{K}=1\) ), it will be seen that the signal
B corresponds to what is normally called the Q output changing on the back

See "An electronic organ tone system, part 5", Wireless World March '79. This also shows pre-setting.
edge of the clock, whereas A corres ponds to an output of the 'slave' bist changes on the front edge. Th availability of the A output simplifies cascading and for certain divisions such as 10 or 12, allows binary-coded outputs to be generated directly a
described later

If Fig. 2(a) circuits are cascaded directly, using the A or B output of each as the p signal for the next, counts are restricted to powers of two and to per mit other divisions the additional inpu \(q\) is used at gate 2. Clearly when \(q=0\)
signal B never appears and \(A\) simply follows p . Using c.m.o.s. gates in particular, a simple diode OR permits a con cular, a simple
nection such a
\[
\mathrm{p}_{3}=\mathrm{B}_{1}+\mathrm{A}_{2}
\]
that is, the p signal into the third stage can have the combined duration of om stage 1 and A from stage 2 .

(b) Because both A and B outputs are vile wiele it is (apparently) always posto arrange that well as even divisions, outputs is a square wave (assuming that the input is a square wave). For example, for division by 7 , an output ignal of which each excursion lasts for \(11 / 2\) input periods can be obtained.
(c) The transitions of outputs can be
made to occur at either the 0-1 or the \(1-0\) transitions of the input signal.
(d) The switch-on state (with input absent) can be predetermined by retur ning the various capacitors appro priately to the high or low supply rails, 2(a), is the normal one, and results in a reset' state at switch-on.
(e) Reset from any stage can be achieved by setting the input and any q 1,2 and 3 gate outputs high (f) Presetting (programming) is possible, for example by directly charging appropriate capacitors via diodes. Fig. 3 shows the sequence diagram and with binary-coded outputs (b.c.d.) changing on the \(0-1\) input transitions and using four cells numbered from 0 (1.s.d.) to 3 (m.s.d.). The action can be transitions of each stage occur at those of its own \(p\) signal. For example, it is the transitions of \(\mathrm{B}_{1}\) which control \(\mathrm{A}_{2}, \mathrm{~B}_{2}\) and this ensures that \(\mathrm{B}_{2}\) has the correct
duration to provide the \(2^{2}\) output digit The feedback connection \(q_{1}=a_{3}\) sup resses a third appearance of the signa \(B_{1}\) because \(a_{3}\) becomes zero following action of \(A_{1}, B_{1}\) on earlier pulses, it is necessary to establish \(q_{1}\) (i.e. \(a_{3}\) ) at the same time as \(a_{1}\) and this is achieved by the component \(A_{1}\) in the signal \(p_{3}\). in the \(p_{3}\) signal ensures that the signal \(\mathrm{B}_{3}\) does not appear until the start of pulse 8 , allowing it to be used directly as the \(2^{3}\) output digit.
It is clearly necessary that when an 'a gnal is used for feedback to an earlie time as that stage's own 'a' signal. In the 12 -counter of Fig. 4, the feedback is from stage 3 to stage 2 and this allows a appear later (though there would b objection to its being establishe han \(A_{0}\) as the \(p_{1}\) signal results in the readouts changing at the back edge of each input pulse, as with a JK counter rather than at the front edge as for Fig.
3. For this reason \(B_{i}\) is also used as the \(2^{0}\) digit output: otherwise the readouts ar as Fig. 3, the two extra counts bein covered by the third appearance of B and the longer duration of \(\mathrm{B}_{3}\). The configuration of Fig. 4 has been used to pulse per hour and has operated with out trouble for more than a year in a situation where difficulty was ex


 1
, 5


Fig 8. 7 -counter using three cells
\(p_{0}=p_{1} p_{1}=A_{o} p_{2}=B_{1}, q_{0}=a_{1}+a_{2}\),
\(a_{1}=1, a_{2}=1,2^{=}=B_{2}\left(A_{1}+A_{2}\right), 2^{=}=B_{1}\)
\(\left(A_{1}+A_{2}, 2^{0}=A_{0}\left(A_{1}+A_{2}\right)\right.\). Change
on 0-1 transitions. \(B_{2}\) excursions are
each \(31 / 2\) periods of \(p\).

Fig. 6. 5-counter using three cells \(p_{o}=p, p_{1}=A_{o} p_{2}=A_{1}+B_{1}, q_{o}=a_{3}\),
\(q_{1}=a_{2} q_{2}=1 ; 2^{2}=A_{2} \cdot B_{2} 2^{l}=B_{1}\), \(2_{1}=A_{c} A_{2}\) change on \(0-1\)
transitions.


Fig. 7. 6-counter using three cells. Change on 0-1 transitions.

-

Fig 9(a) Johnson code 4 -counter. Points \(a, a\), etc. are joined and the basic logic is \(A=p . d+p . a, B=p . a+p . b, C=p . b+p . c, D=p . c+p . d\).

-



Fig. 10 One-package cell using a 4539 dual multiplexer. The diode AND requires connection \(Q_{n}=A_{m}\) rather
than \(q_{n}=a_{m}\) in Figs 3-7. It is omitted for \(q=1 . R=1\) to reset.
perienced with a fast m.s.i. counter. Figs. 5 to 8 show some of the arrangenents possible for differen expressions. Other configurations can provide different facilities, for example an output which goes high for one or more out of every \(n\) input periods and so

Johnson code counter shown in Fig. 9 This circuit can be extended to any even division.
In general the counters, and any subsequent decode logic, are transparent to input disturbances which exceed the
switching levels, but this does not result in malfunction if the eventual output device is slow, for example a relay or contactor.

\section*{References:}
1. Zissos and Copperwhite, "Logical Design

Manual", Pitman. 2. Lewin, "Pogical Design of Switching
Circuits", Nelson.

Wireless world, november 1979 Reserve Fleet Wireless and Signal Officer and
continued in this operational work until 1929 when he became a senior instructor in wire less telegraphy at the Royal Naval Signal
School. It was during this period at Portsmouth that he was responsible for producing the famous Admiralty Handbook of Wireless Telegraphy, 1931 , from which many students,
not only naval people, learned the funnot only naval people, learned the fun-
damentals of radio. (The Ministry of Defence tell us that he "wrote two handbooks" on th subject.) From 1931 to 1933 Mountbatten was appointed Fleet Wireless Officer to the
Mediterranean Fleet, in which post he was responsible for the radio efficiency of some seventy ships.
His period of specialization in radio ended
in 1934 when he was put in command of HMS Daring, but there was a continuing link with the technology in that he had qualified for membership of the Brit. IRE (now IERE) in 1932 and was electer a member in 1935 . Then
in 1938 , just before be became so deeply engaged in the \(1939-45\) war, he was elected vice-president of the Institution. There is no
need to repeat here the well-known facts of need to repeat here the well-known facts of
Mountbatten's career as Chief of Combined Operations and later as Viceroy of India in
which he skilfully carried out the difficult which he skilfully carried out the difficult task of dismantling the British raj. After the
war, in 1946, he was elected President of the Brit. IRE and gave a forward-looking pre-
sidential address on sidential address on computers and the
retrieval of information which showed his awareness of the latest applications of electronics. This interest in electronic computers continued and in 1966 he was invited to
become president of the British Computer become
Society.
For the last 30 years, his life could be seen as an accumulation of official appointments,
honours ment honours, memberships, patronages, mostly ranging from an exalted Fellowship of the royal Society to the relatively obscure vice: presidency of the British Wireless Dinner
Club. He became president of the IERE again in 1961 when the Institution received its Royal Charter - and the two events were not entirely unconnected. But in the last 15 years he was associated more prominently than
anyone else with the activities of the Natioanyone else with the activities of the National Electronics Research Counch, later
become the National Electronics Council.
Indeed it was very much hisidea - the IERE Ind all the donkey work of carrying out his commands - and as chairman he was such a dominating influence that those who didn't
think much of the Council's contribution to think
British electronics tended to dismiss it as "Mountbatten's hobby"
One function of the present NEC is to consider the effects of electronics on society and this was very much the theme of he first under the name The Mountbatten Lectures. Lord Louis himself gave this first lecture personal style which came naturally from his aristocratic upbringing and military training - abrupt, self-confident and conveying a strong sense of duty. Having pointed out that
all technical innovations were "capable of selfish and sometimes dangerous exploitation" he characteristically wasted no time in
exploring the wider implications of this fact exploring the wider implications of this fact
but put his remedy in terms of personal obligation, quoting from Paradise Lost the words of another man with a clear and strong if simple vision of life.
"Accuse not Nature, done her part;
Do thee but thine,"


\author{
FROM HERE...
}


\section*{TO HERE...}


\section*{NEED NO LONGER TAKE AN ETERNITY OR COST A FORIUNE}

Time is money and with conventional custom designs, the process from the detailed logic design through to layou of the chip can take 6 to 9 months of total engineer involvement.

The following stages of mask rammes still have to take place. In this age of rapidly changing technology, two years to production is an eternity in both commercial and economical sense. This is why GEC Semiconductors have eveloped the Cellmos system, w lowial LSI designs with a much low
starting fee and in a much shorter time Once we have approved logic diagrams, our computer will proces the design through a series of progonto the chip. The whole sequence will not take more than a few hours of computer and engineering time. The turn round time from the approved logic to samples is ardly an eternity.
If you feel the Cellmos system can help with your problem, please write or or even a demonstration.

GECS Semiconductors Limited East Lane, Wembley Middlesex HA9 7PP

\section*{Two-metres.s.b.and f.m. transceiver - 2}

Signal-frequency circuits and phase-lock unit
by G. R. B. Thornley, G2DAF
 (variable-frequency oscillator) output and fed to the phase detector as logic levels. After filtering, the loop output is used to control the v.c.o.
When the frequencies from the i.f
\(\mathrm{D}_{28}\) and \(\mathrm{D}_{27}\) to control the oscillator \(\mathrm{Tr}_{3}\) The oscillator output drives the class C frequency doubler \(\mathrm{Tr}_{35}\), to provide
either 125.0 MHz or 126.0 MHz input to gate 2 of the mixer \(\mathrm{Tr}_{36}\). Unwanted multiplication products are greatly suppressed by the resonant circuit \(\mathrm{L}_{2}\) \(\mathrm{C}_{179}{ }_{\text {The }}\)
The mixer output in the range 8.3 to .3MHz is further amplified by the i.f tage \(\mathrm{Tr}_{37}\). Coils \(L_{28} L_{29}\), together with damping resistors \(\mathrm{R}_{165} \mathrm{R}_{166}\) form a low Q bandpass circuit at the required i.f. follower, giving low-impedance output to drive the phase detector section.
Class B amplifiers \(\mathrm{Tr}_{39}\) and \(\mathrm{Tr}_{40}\) convert the two sine wave inputs to hal wave pulses. Each input drives two outputs from pins 6 and 8 are connected the inputs of the phase detector \(\mathrm{IC}_{3}\) The phase detector is locked in when he reference inputs at pins 1 and 3 are qual in frequency and phase. If the lags in phase, the output at pin 13 goe ow. Conversely, if the variable input is higher or leads in phase, the output a pin 2 goes low. The charge pump (pins 4 and 11) converts the phase detecto negative pulses appearing at pins 5 and 10. These pulses are applied to a lag-lead active filter \(\operatorname{Tr}_{41}, \mathrm{C}_{199}, \mathrm{R}_{169}\) and an inter nal amplifier between pins 9 and 8 whinal to the phase error. Logic Ievels from the phase detector are applied to two NAND gates in \(\mathrm{IC}_{4}\), whose output
pin 6 drives \(\mathrm{Tr}_{42}\) so that the l.e.d. il-


luminates when the loop is locked
Diode \(\mathrm{D}_{30}\) is for protection only. The MC4044P integrated circuit Thase detector produces reliable and matically from switch on
V.c.o. amplifier. Input from the v.c.o. is amplified by the two class A stages \(\mathrm{Tr}_{4}\) and \(\mathrm{Tr}_{44}\) in Fig. 7 and fed at low impedto the f.e.t. mixers of the receive con verter and the transmit converter units. Resonant circuits \(\mathrm{L}_{30} \mathrm{C}_{210}\) and \(\mathrm{L}_{31} \mathrm{C}_{213}\) Rave sufficient bandwidth to cover the 135.3 MHz . The two low-impedance outputs each provide approximately 500 to 700 mV r.m.s. which is the optimum equirement for the balanced f.e.t. mixers.

Fig. 6. Phase-locked voltage-controlled oscillator provides frequency of 133.3 to 134.3 MHz

Variablefrequency oscillator. Th master v.f.o. is built as a self-contained screened unit, with a \(100: 1\) ratio worm gear drive controlling the tuning. This gives a \(50: 1\) ratio for the 180 degrees rotation of the tuning capacitor. In
practice, it is desirable to have a small practice, it is desirable to have a small overlap at each end of the required
\(1,000 \mathrm{kHz}\) range. Accordingly, the L/C ratio of the resonant circuit is optimized to give \(1,000 \mathrm{kHz}\) frequency change for 144 degrees rotation of the tuning capacitor. This corresponds to 40 turns of the tuning dial, equal to 25 kHz
frequency change per dial rotation. This
is very convenient in practice, slow enough to enable precise setting for reception of s.s.b., and not too tedious
when traversing from the low to the high end of the band.
In the author's experience over 20 years of s.s.b. operation where v.f.o. stability is of great importance, the Colpitts L/C oscillator has proved to be
superior to any other circuit configuration, and has the added advantage of purity of waveform and almost constant output amplitude over the relatively wide tuning range. Figure 8 shows the circuit of the v.f.o. unit. oscillator, tuned by \(\mathrm{C}_{222}\). The two capacitors \(\mathrm{C}_{224}\) and \(\mathrm{C}_{225}\) in series swamp any change in transistor input capacitance and provide feedback voltage to
maintain oscillation. Output is taken at

covering 8.3 to 9.3 MHz .

low impedance from the source of \(\operatorname{Tr}_{45}\) to two f.e.t. source-follower isolating stages \(\operatorname{Tr}_{46}\) and \(\operatorname{Tr}_{47}\), and finally to a two-section, constant-K, low-pass filter. higher-order harmonics that could produce "birdies" in the wanted 2 m band. In common with all semi-conductor devices, the v.f.o. is sensitive to quite small voltage changes from the hum modulated by any residual mains ripple. Accordingly, the +12 V supply rail is further stabilised by \(\operatorname{Tr}_{48}\) and \(\mathrm{D}_{32}\). The variable capacitor diode \(\mathrm{D}_{31}\).
receives the audio output from the receives the audio output from the
microphone amplifier of the f.m. generator of Fig. 3 , via resistor \(\mathrm{R}_{190}\). This produces a capacitance change, which frequency modulates the v.f.o. output. "Deviation is controlled by the pre-set "microphone gain" resistor \(\mathrm{R}_{117}\) in Fig.
3. Initially the direct voltage applied to \(\mathrm{D}_{31}\) is derived from the panel operated calibrate" control and this facility allows precise setting of the tuning dial
frequency divisions at any part of the \(144-146 \mathrm{MHz}\) band, by reference to a \(100 / 25 \mathrm{kHz}\) crystal controlled calibration oscillator or alternatively while sampling the transmitter output with a digital frequency meter. With the ex(which are separately screened) and \(\mathrm{L}_{32}\), \(\mathrm{C}_{219}, \mathrm{C}_{220}, \mathrm{C}_{222}\), all components are assembled on a p.c.b. measuring \(2^{2} /\) in by
\(\qquad\) The choice of v.f.o. operating frequency is of importance, and is governed by a number of factors, some
of which are conflicting. Additionally, since the s.s.b. generator can equally well become the heart of an h.f.
transceiver it is prudent to ensure that the v.f.o. fundamental and harmonics are clear of the 3.5, 7.0, 14.0, 21.0 and 28.0 MHz amateur bands. Other frequencies to be avoided are 10.7 MHz
and 5.35 MHz (filter and half filter frequencies), and any v.f.o. output which, in conjunction with the crystal oscillator, could produce a third-order product \(\left(2 f_{1} \pm f_{2}\right)\) crossing the wanted 144 to 146 MHz amateur band frequency is likely to be more stable than a v.f.o. operating on a higher frequency. However it is desirable to use a small, mechanically-stable vari-
able capacitor that can be housed in a very rigid die-cast box, and in practice this limits the maximum swing to about 100 pF . The choice of 8.3 to 9.3 MHz has been carefully made as an acceptable
Continued on page 96


Fig. 9. Receiver converter accepts 2 m aerial signal and converts it to 10.7 MHz

Fig. 10. Transmitter converter uses
output of v.c.o. and two generators to Fig. 10. Transmitter converter uses
output of v.c... and two generators to
provide 2m signal to power amplifier. provide \(2 m\) signal to power amplifier.
Value of \(R_{224}\) may need adjustment, \(T r_{4}\)


\section*{Electronic speedometer}

Design operates from 1 pulse per road wheel revolution

\author{
by A. J. Ewins
}

A disadvantage of electronic speedometers which use gear-wheel must be in close proximity to each other for acceptable results, while photoelectric methods can only function effectively in clean environments. This article outlines
a design in which the operating distance between activator and sensor can be as great as 1 inch ( 25 mm ). The circuit operates on the basis of one pulse per revolution of the road wheel and the design is simple enough to permit qu vehicle.

WHERE FREQUENCY-TO-VOLTAGE converters are in use in an electronic speedometer circuit, many pulses may be generated per revolution of the road
wheel. Such circuit approaches often involve the use of marked black and white areas on the axle or otherrang from dirt, or, in the case of gear-wheel pick-ups, the surface must be carefully prepared. A system which operates from one pulse per road wheel revoluparation of surfaces is therefore an attractive one.
A further problem in conventional systems is that a restriction to one pulse per revolution, i.e. at speeds lower than
10 mph and a wheel diameter of 30 in or
more, rules out the use of the pulse width modulation frequency-to-voltage vide a ripple-free analogue voltage or a useful response time.

\section*{Principle of operation}

The technique employed in this case is one where a small rotating magnet generates a signal which is used to Each revolution is marked by a pulse, the period between consecutive pulses then stored until the next pulse arrives. The period between pulses is thus causing the pulse repetion ration,
 ween pulses.
A digital period-to-voltage converter generates a voltage which is directly proportional to the speed of the vehicle. vehicle is obtained for each wheel revolution, and because the measured period between pulses is stored until the next pulse arrives, the output voltage speed is constant, even at very low speeds. Steps in the output voltage will occur only when the vehicle accelerates or slows down.

\section*{Main circuits}

The circuit of the digital timer, consisting of an oscillator driving four decade counter stages via a divide-by-four by-four counter is included to ensure that the clock pulses from the oscillator, which operate latching and reset functions, are of much shorter duration than the least significant bit of the timer. are passed to latches which store and hold the count between pulses from the pick-up transducer.
Operation of the timer is as follows. A negative-going pulse from the pick-up able comprising inverters 4 and 5 and their peripheral components. Clock pulses are fed vià each NAND gate to the Dinputs of the four quad latches, where they are transferred to their Q outputs
and subsequently "frozen." Inverter 1 clocks flip-flop " \(A\) " which resets the divide-by-four counter, decade counters and 2 and flip-flop " \(B\) "
Further processing results in the divide-by-four and decade counters 1
and 2 being reset and made ready to start counting again. Flip-flop "B" also becomes free to respond to its first clock pulse from the output of decade counter
2. Flip-flop " B " is included so that the first 100 pulses to the input of decade counter 2 may be ignored. Not until the (after exactly 100 pulses to the input of decade counter 1) does the Q output of flip-flop "B" go low, releasing the reset Maints to decade counters 3 and 4 " B " in a low the Q output of flip-flop pulses ensures that further pulses from the pick-up transducer are locked out,
for reasons which will be explained later for reasons which will be explained later
in the description of the period to-voltage-converter.
As the divide-by-four counter is reset for the duration of one clock pulse, it is arranged that the interconnections bet-
ween the two flip-flop sections divide-by-four counter, and the first decade counter are such that only a further three clock pulses are needed before the first decade counter is
clocked. For this reason the \(Q\) output of the second half of the divide-by-four counter is used to clock the input of decade counter 1 .
The clock and enable inputs of the decade counters are interchangeable as the counter advances en input high positive-going transition of its "ck" input. Conversely, when the "ck" input is low, the decade counter advances one its "en" inputgative-going transition of

\section*{Period to voltage converter}

Fig. 2 shows the circuit diagram of this section of the speedometer. The tches each connect to the four quad latches each connect to the base of a inverted n-p-n transistor through a \(12 k\) resistor. A "low" state at the \(Q\) output of any of the latches causes the approits emitter resistor to the 0 volt line Each transistor is used in the inverted mode in order to take advantage of the
much reduced \(V_{\alpha c}(<2 \mathrm{mV})\) which results from this approach: The value of each of sely proportional to the value of the appropriate Q output from the latches. The total value of each resistance switched to 0 V is given by \(600 \mathrm{k} \Omega / \mathrm{N}\),
where \(N\) is the decimal value of output from the timer. The output voltage, \(V_{\mathrm{O}}\), of the potential divider formed by \(R_{1}, R_{2}, R_{3}\) and the switched value is given by \(V_{o}=12 R /\left(R_{1}+R\right)\), where \(R=\) N.

Evalu
Evaluated, \(R\) becomes \(4.5 \times 10^{9}\) \(\left.7500 \mathrm{~N}+6 \times 10^{5}\right)\) and \(V_{0}\) becomes
\(V_{0}=12 \frac{\left(4.5 \times 10^{9} /\left(7500 \mathrm{~N}+6 \times 10^{5}\right)\right.}{3 \times 10^{4}+\left(4.5 \times 10^{9}\right) /\left(7500 \mathrm{~N}+6 \times 10^{5}\right)}\)
\[
=12 \frac{(20)}{(\mathrm{N}+100)}
\]

The actual count value of the timer \(N\) is always 100 counts short of the true value, \(M\). Thus \(N=M-100\), and substituting for \(N\) in the above equation gives \(V_{Q}=12.20 / M . M\) is directly pro-
portional to the period between pulses, and therefore \(V_{0}\) is inversely propor tional to \(T\) and directly proportional to equency, \(F\)
In practice, the value of \(N\) cannot be ess than zero and therefore \(V_{0}\) has a \(100=2.4 \mathrm{~V}\). The gain of the first stage op.amp. is adjusted to be exactly 0.833 o that the maximum signal output corresponding to full scale deflection If.s.d.) for the speedometer, is 2 V . It is convenient for the maximum say, \(100 \mathrm{~m} . \mathrm{p} . \mathrm{h}\). The speed of \(100 \mathrm{~m} . \mathrm{p}\).h results from a period between pulse related to a timer count of 100 \(N=0000\) ). The maximum number o \((M=9100)\) since, when the fourth de cade counter reaches a value of 9 (A and D outputs high) the "en" input of the

Fig. 2. Period to voltage converter. Switching transistors can be BC107 or similar type.

first decade counter becomes low (output of NAND 4 becomes tow tinhibiting the counter, and hence the timer, from that may be indicated by the speedometer is therefore related to a count of
9100 and is equal to 1.099 m 9100 and is equal to \(1.099 \mathrm{~m} . \mathrm{p}\).h
of speed is inversely proportional to an integer value of time that increases or decreases with a minimum step of 1, the speedometer will have a finite resolu-
tion. However, as the minimum value of tion. However, as the minimum value of
the integer is 100 and the step value is 1 , the resolution is never worse than \(1 \%\) of f.s.d. The actual f.s.d. of the speedometer may be adjusted to any value greater than \(1.1 \mathrm{~m} . \mathrm{ph}\). and less than
\(100 \mathrm{~m} . \mathrm{p} . \mathrm{h}\). For this purpose, the second op.amp. stage in Fig. 2 has been included. The value of the variable resistor is directly proportional to the f.s.d. of the speedometer. By making R4 a tenturn variable resistor with a ten-turn
indicator, any convenient f.s.d. may be 'dialled in'. Regardless of the f.s.d. selected, the resolution of the output signal is never worse than \(1 \%\) of the total deflection.

Oscillator
The circuit of the clock oscillator is shown in Fig. 3. The frequency that the clock oscillator must run at is deter mined by the diameter of the vehicle's
road-wheel and the required maximum f.s.d. of the speedometer. For a wheel circumference of \(\pi D\) (where \(D\) is the diameter of the wheel in inches), the frequency of the pulses generated at an f.s.d. of \(100 \mathrm{~m} . \mathrm{ph}\). (for one pulse per
wheel revolution) will be \(100(88 / 60\) ) ( \(12 / \pi D\) ) per second. For 100 pulses to be counted by the timer, the frequency of the oscillator must be ( \(4 \times 100\) ) times this value. i.e. Oscillator frequency \(=\)
\(400 \times 100 \times(88 / 60)(12 / \pi D)=704,000 /\) \(400 \times 100 \times(88 / 60)(12 / \pi \mathrm{D})=704,000 /\)
\(\pi D\). Thus the period of the oscillator (T) \(\pi D\). Thus the period of the oscillator ( \((\) ) Fig. 3, this period is given by 0.693 C. \(\quad\left(R_{1}+2 R_{2}\right)\). Therefore \(\pi \bar{D} /\) \(704,000=0.693 C\left(R_{1}+2 R_{2}\right)\). This is very
convenient for \(\left(R_{1}+2 R_{2}\right)\) can be made directly proportional to the whee diameter, \(D\). By choosing \(R_{1}=2 \mathrm{k} \Omega\) and \(R 2=1 \mathrm{k} \Omega+10 \mathrm{k} \Omega\) var. a useful range for \(D\) can be made from 10 in to 60 in . From the above equation, the value for the capaci-
tor, " C , " works out tor, " \(\mathrm{C}_{0}\) " works out at 16.1 nF which can be
made up of from selected capacitors of 15 nF and InF . By making the \(10 \mathrm{k} \Omega\) resistor a ten-turn type, the value of the wheel diameter can be easily dialled in.
Before proceeding to a description of
the circuit and design of the the circuit and design of the pick-up
transducer there is one further feature of the digital timer circuit that must be mentioned. It will be remembered that negative-going pulses from the pick-up transducer trigger the monostable, inputs of the latches to be transferred to their Q outputs, provided that other conditions are correct. If the vehicle decelerates quickly, it may be that the


Fig. 3. Clock oscillator circuit


Fig. 4. Detector circuit. \(T r_{1}\) and \(T r_{2}\) the 10 k potentiometer in the 12 V line.
the Q outputs of the latches is not the minimum speed measurable (i.e. 1.1m.p.h.). In that case, the higher value of speed would remain indicated until the vehicle moved off again. To get over
this problem, the output from NAND 4 this problem, the output from NAND 4
(which disables decade counter 1 and at the end of an equivalent count of 9100 ) is also fed to the other input of NAND 2. When either of the inputs to NAND 2 are low, its output will also be low.
Thus, information from the latch D inputs is transferred to the Q outputs when either a pulse is produced by the pick-up transducer or when the timer runs to its maximum count. However, although the transducer pick-up pulse
also resets the timer, it is not reset upon reaching its maximum count. This procedure ensures that the speedometer indicates its minimum value of speed
when the vehicle is stationary

Fig. 4 shows the circuit of the pick-up detector. A standard G.P.O. relay, with two \(1 \mathrm{k} \Omega\) (d.c.) windings, is used as the pick-up sensor, \(\mathrm{Tr}_{2}\) is self-biased by
the \(10 \mathrm{k} \Omega\) resistor connected between its the \(10 \mathrm{k} \Omega\) resistor connected between its
collector and base terminals. At the same time, this resistor provides the bias voltage for the base of \(\mathrm{Tr}_{1}\). Provided that the two transistors are fairly well matched, and the impedances of
the solenoid windings in their emitter lines are the same, similar collector currents will flow through both transistors. The \(10 \mathrm{k} \Omega\) balance potentiometer is adjusted so that the collector voltage of
both is the same at a value of about 1 V . both is the same at a value of about IV.
The potential on the positive terminal of the \(709 \mathrm{op} . \mathrm{amp}\). is thus 1 V , and that on the negative terminal about 1.8 V . The relay solenoid windings are connected into the emitter lines of the two tran-
sistors in such a way that the direction sistors in such a way that the direction
of the windings oppose. Thus when a negative voltage is induced in one, a positive voltage is induced in the other. Voltages are induced in the windings by the passage of a small magnet proto the face of the solenoid. Ideally the magnet, attached to the axle or wheel of the vehicle, is orientated in such a way that a positive voltage is induced in the winding of \(\mathrm{Tr}_{1}\) as the magnet
approaches the solenoid, and a negative approaches the solenoid, and a negative
voltage induced as it moves away. Because of the \(10 \mathrm{k} \Omega\) feedback resistor around \(\mathrm{Tr}_{2}\) its base voltage will follow its emitter voltage. Thus, as \(\mathrm{Tr}^{\prime}\) 's emit-
ter goes positive its base goes negative, resulting in a positive-going voltage on its collector. Because the collector resistor of \(\mathrm{Tr}_{1}\) is some 30 times greater than its emitter impedance, the small induced voltage on its emitter is greatly unity voltage gain by virtue of the \(10 \mathrm{k} \Omega\) feedback resistor. Thus as the inverting input of the op.amp. goes negative by an amount equal to the small induced voltage, its non-inverting input goes
positive by an increased (induced) voltage. The magnitude of the induced voltage depends upon the strength of the magnetic field cutting the solenoid and the rate at which it cuts it. A small, round magnet of about \(3 /\) in diameter
and \(1 /\) in thick, induced a sufficiently large voltage at a distance of lin. from the solenoid and a cutting speed of 1 foot/sec to trigger the op.amp. Into changing state. The strength of the later measured as 20 Gauss.
As we have seen, a positive voltage induced in \(\operatorname{Tr}\),'s winding produces a positive-going pulse at its collector. The magnitude of the pulse cannot be more negative voltage is induced into Tr,'s winding (as the magnet moves away), tage only a little less than its normally biased value of 1 V.

\section*{Now, the complete MK 14 micro-computer system from Science of Cambridge}


"GOOD, CLEAN FUN" After reading your September editorial on c.b. radio I wonderif ifitisto be future policy of
Wireless Wordd to provide free publicity for Wireless Wordd to provide free publicity for
any other type of illegal activity, provided any other type of tilegal activity provided
only of cuurse that its supporters claim their onin or course that its supperters claim their
number are such as to ronder legalisation \(\frac{1}{1} \frac{1}{1}\) perative. several group happ po to proporide details of
outuside posent operating several eroups of people at present operatitig
oustide of the e avw who would welcome the
sind support of a long established periodical in
order to have their activities legais sed. Each order to have their activities legalised. Eac
of thenes rroups, I am sure, would claim equa ability at least with the c.b. pirates, to meet the qualificiotory standard
acceppable to Wireless World.


 not be too difificult in the near future to
secure abolition tor instance, of the roving
teet. assuming a handfulu of people can ontain test assuming a handful of people can obtain
sufficient publicity for their freedom of the
 road philosonh. There is no inference of
ponicipli, it is merly a question of degree.
Good clean, fun, in fact
Your (unintended, I am sure) equation of c.b. with some of the current t programmes
may well be apt. But your contention that many megahertz of airspace are occupied by
trash as yo call it as justification for an trash, as you call it, as justification for an
extension of the situation, is surely as specious as your statement that an argument
based on the necessity to legalize the activ based on the necessity to legalize the activ-
ities of lawbreakers "does carry a certain

If your editorial is a representative sample of the calibre of the arguments. being ad-
vanced in support of \(f\) cbin find
the Home vanced in support out... 1 firenending disap provall not in the least surprising.
I. D. Peorson G3KOC
New Holland

Newth Hunderside.

\section*{RELATIVITY AND TIME}

SIGNALS
The letter of mine on this topic in the Sep. tember issue was written quickly on holiday quickly when I returned to my textbooks. because it contains an elementary error
However because However, because Murphy's Law intervened
 The frequency (or time) correction for part, of course, contains no ongulur term and is therefore independent of the direction the source's motion relative to any observer
Untortunately for Dr Essen's critics this correction must be applied symmetrically to the observations of all observers in order to preserve the strict equivalence of their
measurements of the velocity of light, \(c\). To illustrate this, I will borrow Prof Fremlin's, example (Letters, April 1979) of a "Traveller away) at a velocity \(v=0.9999905\) away) at a velocity \(v=0.9999905{ }^{c}\)
relative to Earth. His discussion of this example is correct up to the end of the paragraph containing the reference to the
footnote. However, in the footnote, distance in the moving universe seen by Traveller is * Apologies to Dr Morris and to readèrs for this

given as \(12 \times 0.0044\) light-years, whereas light-years are invariant under the Lorentz transformation. (This is so because the lightyear is a statement of the velocity of light, as distance per year.)
own clock showing only 19 days for the journey to Sirius he would know that something was very wrong without having to look out of the
universe. All universe. All his, velocity measurements space-ship would be wrong, including the the usual time to boil a kettle or walk the length of the cabin, for example.
His clock appears slowed by this factor
only to observers at rest relative to the only to observers at rest relative to the Earth,
so that the velocity of light can remain correct as measured inside his (to them) foreshortened space-ship. \(c=(d \times 0.0044) /\)
\((t \times 0.0044)\) where \(d\) and \(t\) are corresponding distance and time intervals in rest coordinates. Similarly, when he looks out at the shrunken universe he will conclude that the clocks out there are slow by the appropriate
factor to preserve the value of c in moving factor to preserve the value of \(c\) in moving
coordinates. His own clock will be running suitably to give the same numerical value of \(c\) inside the vessel and in co-ordinates fixed
relative to it, and moreover, giving a journey relative to it, and moreover, giving a journey
time of 12 years 1 hour each way! It is not too hard for us to accept that
Traveller's volume, and even, superficially, Traveller's volume, and even, superficially,
his absolute temperature only appear to be reduced by the factor \(V\left(1-v^{2} / c^{2}\right)\) during
his journey and no-one would contend that his reading of our apparent ambient temperature of about 1.3 K represented any kind of reailty for us. If it did, we would certainly not
get much older. The difficulty lies in the time-dimension effect, which to our intuition is not so easily reversible as are steady-state
parame parameters like length and temperature;
when ticks, heartbeats, atomic vibrations and decay events of elementary particles
have been lost, they cannot be so readily restored. (The relativistic effect on apparent tenpperature is in fact a consequence of the
apparent time dilation, and so similarly apparent time dilation, and
represents "missing" vibrations.)
Relativistic corrections for apparent mass, length and time scales of high-energy elemen-
tary particles are certainly in everyday use in tary particles are certainly in everyday use in
many fields: in conjunction with Maxwell's equations they "work" to the ultimate limits of measurement. However, this only proves
the internal self-consistency of a scheme which was, after all, devised in its numerical form by Lorentz for the very purpose of
saving Maxwell's equations from the consesaving Maxwell's equations from the
quences of an undetectable "ether".

The unexplained "missing ticks" effect, as
pointed out by Dr Essen (October 1978 issue) clearly intrinsic to the Special Theory of Relativity. This fact is at variance with our notions of the nature of "events" and their W. T. Morris

Teddington
Middlesex

DISPLACEMENT

\section*{CURRENT}

Professor Bell's article "No radio without displacement current" in the August issue
raises so many issues it is difficult to know where to start. Rather than deal with the purpose of the article. The title of the article makes this clear; it is an attempt to defend with particular reference to displacement.
current. I understand that Aristotelians believed
that a force was necessary to keep bodies in hat a force was necessary to keep boides
motion and that, in the absence of this force, the motion would cease. This theory led them into certain difficulties. For instance a spear,
once thrown, appeared to continue to move once thrown, appeared to continue to move
without a force being present. The philosophers rose to this challenge magnificently with a theory that air, displaced from ahead
of the spear, rushed to the rear and generated of the spear, rushed to the rear and generated.
the requisite force - the theory was saved. Unfortunately they missed the simple point first noted by Newton, that it is in the nature
of a moving body to continue to move. In the same way I fear that Maxwell invented a complex explanation for a very
simple phenomenon, ie that electromagnetic simple phenomenon, ie that electromagnetic
radiation, or energy current, moves at the speed of light - and that's all, because that is what energy current does. No mechanism nvoking \(E\) producing \(H\) and \(H\), in return,
producing \(E\) is required. As for the details of Bell's article - they do not stand up well to close examination.
In the first plac
In the first place, it is unwarranted to
suggest, as Bell does, that since Maxwell introduces the idea of displacement current early in his, treatise (the correct title, in-
cidentally, is "A treatise on electricity and cidentally, is "A treatise on electricity and
magnetism" and Bell appears to be referring magnetism" and Bell appears to be referring
to the third edition first published in 1891 ),
this is a proof that he thought this is a proof that he thought of it in con-
nection with simple phenomena. This is just nection with simple phenomena. This is just
too simplistic; the way Maxwell presents his too simplistic: the way Maxwell presents his
ideas cannot be taken as a guide to how he thought of them. Much has been written and
many papers have been published on the many papers have been published on the
genesis of Maxwell's thought and it is inadmissable for Bell to treat the subject in this superficial way. I would be happy to provide a list of references (about 20 ) to anyone who
would like to study the development of Maxwell's thinking in detail. I suggest Joan Bromberg's paper \({ }^{1}\) as a good start to the
subject
There are many errors of detail in the article. Perthaps I could draw attention in particular to the statement that "Maxwell.... was at home with vectors." Vector algebra
was not invented in Maxwell's time and he never used it. He made some use of Quarterninic formulation of his equations but was
not consistent in its use - Maxwell, in fact, not consistent in its use - Maxwell, in fact,
never formulated his theory in terms of four equations - this was left to Heaviside who also introduced vector calculus more or less
as we know it.

\section*{}


The rest of Professor Bell's article can be
ound in any elementary textbook on ecec found in any elementary textbook on elec-
tromagnetic theory; its testament, however, does nothing to establish that theory which is
in the process of being replaced by a simpler in the process
formulation.
D. S. Walton
CAM Consultants

St Albans
Herts
Reference
1. Bromberg, J. "Maxwell's Electrostatics,",
American Journal of Physics. 36,145 . 151 Americicen
(1968).

The author replies:
First, Dr Walton's reference to Aristotelian philosophers is a red herring. I mentioned early speculation about the planets becaus he hypothesis that the same force accounted or objects "falling" to earth (the notorious pple!) and for planets describing closed orbits about the sun. It then involves the
conceptual difficulty of action at a distance, unless one prefers to postulate fields of force,
Incidentally Newton was not the first to Incidentally Newton was not the first to
suggest that a body in motion would so "ontinue if undisturbed. Hobbes in his book "The Leviathan" mentions that it was a subject of discussion whether this be so or
not, and himself unhesitatingly chose Newon's answer. Newton's achievement was to formulate the precise law and "prove" it by
incorporating it in his complete system of incorporating it in his complete system of
mechanics which was supported by experimental evidence.
In considering the proposed alternative to Maxwell's theory of electromagnetic wave energy current"? "Current" usually mean low of something; and "energy" seems to me ntirely abstract unless qualified by som
djective such as kinetic, electrostatic etc. adeat flows? Second, is there a relation, and if
wo
so why betcen so why, between this "energy current" and the observable electric and magnetic effects?
For example, the creation of a spark in air by a focused laser beam is consistent with the electromagnetic theory of light.
As regards the chronology of
different uses of displacement current, the main point is that he did find use for it othe than in the derivation of a wave equation
Others have since found its use in "electroatics" convenient or even essential. (Se ootnote to article.) It may be that the logical train of development which I suggested is
post hoc rationalisation, but one canno post hoc rationalisation, but one canno
prove whether or not this was how Maxwel prow it. The article by Joan Bromberg is entitled
"Maxwell's Electrostatics" and detais well's difficulties in arriving at a satisfactor formulation of 'displacement' in electros tatics, based largely on the concept of
polarisation. So it is in agreement with the point which I was making: Maxwell regarded displacement' as an essential part of the as a device to facilitate the formulation of wave equation.
Of course most of the content of my article text books. It was written onthe suppositio that there are many readers of Wireless World who have not studied a text book on electromagnetisn

\section*{WHAT IS AN ELECTRON?} For the past decale or more For the past decade or more I have been
saying that mechanical force is that component of electromagnetism which is radia tion pressure. Since Professor Jennison (Jun issue) appears to agree with that concept, a
least insofar as the internal forces of a system are concerned, might I be allowed to point out certain errors in the basis of his argumen
which arise out of the concept itself? hich arise out of the concept itself?
First let me say that I a gree possibility of the 'phase locked cavity' idea of n electron. It is the basis of the mathematic hich is questionable.
Clearly from his ar of motion and kinetic is related to the laboratory of in which the th experiment is conducted. Within the context we must ask the question - what is kinetic nergy? Part of the mathematics is base upon the answer
Since force is
Since force is radiation pressure then the
source of the radiation is undoubtedly related to the laboratory; the radiation has some nian case; here the maximum velocity is nian case, here the maximum velocity is
infinite and the effect of the force (the origin of which is with the laboratory) will diminisis linearly as \(F / \nu\), where \(v\) is the velocit
relative to the laboratory. This is a first orde Doppler effect and quite readily understand able.
To cau
\(v\) the for
To cause a change of momentum from 0 to \(\nu\) the force will need to be applied to the mas
over some distance \(L\). We therefore have
F. \(L / 1 / 2 v\)
M.v
thus \({ }_{F . L / 1 / 2 \nu=M . v}\)
or \(E=1 / 2 M \cdots v^{2}\)
(2)
(3) Acribe inertia in terms of radiation pressure and at the same time ignores this fact, must surely be ill founded. Where the radiation
travels at the velocity \(c\) then, due to Doppler travels at the velocity \(c\) then, due to Doppler,
the maximum velocity possible is \(c\) and the the maximum velocity possible is \(c\) and the
second order term appears in the form of the Lorentz transform.
In either the
In either the Newtonian case or the
relativistic case, we may be sure that the energy equations depend upon factors the are external to the mass under consideration
The mass increase hypothesis is therefore no The mass increase hypothesis is therefore no
longer tenable; special relativity thus fails. My second objection to the Professor's argument is of a more practical nature. It is
known from experience with communication that e.m. waves do not interfere each with the other in empty space. How then is it
suddenly possible for those same waves in suddenly possible for those same waves, in a
particular configuration, to be affected by particur waventiguration, to be affected by
simila waves extenal to that configuration?
We may be We may be quite certain that even though the boundaries of the cavity comprise material particles.
Alex Jones
Paimpol
Paimpol
France
The author replies
I can understand Mr Alex Jones being wor-
ried that I had apparently forgotten about kinetic energy related to the laboratory. It is quite impossible to cram all the analyses
from many scientific papers into one article

Wireless World. I can reassure him that, in tron as a phase-locked cavity and rigorously derived the correct relativistic kinetic energy and momentum for the electron scattered in the Compton effect - the first classica
explanation of this phenomenon. Contrary to Mr Jones's statement, the result is perfectly consistent with the relativistic increase of special relativity. Mr Jones then wonder how it is that waves which normally propagate without a "photon-photon" interaction
in free space should have different properties in free space should have different properties
when locked in a particular configuration. Al that I can say to this is "Why not?". The travelling waves have no inertial mass but the treatment shows that standing waves
acquire this property and thereby become acquire this prop
tangible entities.
Mr Jones fin
Mr Jones's final conclusion "we may be
quite certain that even thoush the electron quite certain that even though the electron of the cavity comprise material particles" does not stand up to a full analysis of the required is for the wave system to loop on itself under particular circumstances at this particular wavelength. I wonder also of what substance these 'particles' are to be made? It
is possible to derive the relationships for inertial force and mass without mentioning the boundaries. Consider a centrally noded
\(\lambda / 2\) standing wave system \(\lambda / 2\) standing wave system, of energy \(E\), in
which the node is moved to the right. The force from the right is, very closely.,
\(F_{R}=\frac{E / 2}{\lambda / 4}(1+v / c)\)
and that from the left
\(F_{L}=\frac{E / 2}{\lambda / 4}(1-v / c)+\delta F\)
where \(\delta F\) is the impressed motive force. The system is in kinematic equilibrium and therefore \(F_{\mathrm{R}}=F_{L}\), hence
\(\begin{array}{ll}\delta F & =2 E / \lambda[(1+v / c)-(1-v / c)]=4 E v / \lambda c \\ \lambda / 2=c \delta t\end{array}\) \(\lambda / 2=c \delta t\) where \(\delta t\) is the feedback time
and, from Galileo, the acceleration is and from Gailie, the acceleration is
\(a=2 v / \delta t=4 v c / \lambda\)
and Therefore the impressed motive force \(\delta F=\frac{E}{c^{2}} a\)
whence we obtain at the same time
\(E=m c^{2}\) and \(\delta F=m a\).

THE MILLIBEL
Mr P. Marks's call in a recent letter (June special pleading indeed. This tiny unit is unliakely to find application outside the
laboratory or even In my current work in acoustics. the un. certainty of accuracy of a precision grade sound level meter will probably exceed
\(\pm 0.5 \mathrm{~dB}\) (i.e \(\pm 50 \mathrm{mB}\) at a calibration around \(10,000 \mathrm{mBp}\) ). The overall uncertainty of measurement will far exceed this value, as meter readings fluctuate widely for small changes of reading position other than in free
field conditions. Even if the last-mentioned conditions can be established in anechoic
chambers chambers, the angular variation of sound
radiation is likely to be ar least of the \(d B\) radiation is likely to be at least of the dB
order for most practical sources. Lastly, it midght be thoought than in audiometric work
such as hearing assessment such as hearing assessment greater accuracy
would be needed. But it is well-known that

WIRELESS WORLD, NOVEMBER 1979
ldB is about the smallest sound level change
that most people can detect. From pas experience, I believe that similar argument
could be advanced in the radio and lin transmission fields.
As a ratio, a variation of power level of 1 dB is equivalent to a \(26 \%\) change, while 1 mB
corresponds to \(0.23 \%\). In percentage term the first value seems large, while the latter is by no means negiligible, But in the fields
where such changes are significant they are where such changes are significant they are
not expressed logarithmically, at least at present. Brent perhaps in Mr Marks's home he
switches on a second bar of his electric fire to obtain a 300 mB increase of heat output. suppose that even a 5 millibel (le) increase in
the warmth of my personality would make the warmth of my personality would make me more attractive. Nevertheless, it would be
interesting to know the fields in which Mr Marks sees an application for his tiny pro tege, the millibel.
Anne King
Anne King
London W4

\section*{UNIONS AND \\ ELECTRONICS}

Unlike a recent contributor to the lette read a contribution by Ken Gill from to AUEW-TASS on the role of the Gill from microelectronics. While I support his con-
cern with the need to use new technology such as microelectronics to provide a highe-
quality of life, less boring work etc., I feel he quality of life, less boring work etc., I feel he
has a rather simplistic view of technology itself. A good technology is viewed by him as being productive; a bad technology, in its
applications at least, would be a weapons
system. But in real life the techo system. But in real life the technology we use is a great deal more subtle both in its form and its effects.
progressive social consequences and the damaging side-effects, do no just simply appear alongside one another without a great
deal of assistance from us, the engineers. Economic and political factors have their part to play too. For example a microprocess
sor has to be engineered to function in a sor has to be engineered to function in a
guided weapons system by someone; similarly the functions of a word processor are defined prior to its fabrication. A word processor system can be built to
displace largely female typing labour with a few less skilled keyboard pushers who have even less interest in or control over their
work. But it should be feasible to design a work. But it should be feasibe to design a
microprocessor based office system which while relieving both typists and managers of boring work, at the same time creates a new
division of labour in which office workers could participate more fully in the organisa tion of their work, instead of being pure paper or button pushers.
Ken Gill uses the analo must be our slave and not the master, but while the master can determine what sort of
slave he or slave he or she will employ, in turn the
actions of that slave (in this case microelectronics) play a part in shaping the life of the master.
master.
A engineers in our unions and professional institutions we should discuss what sort
of technology we wish to design and use, and of technology we wish to design and use, and
how to use it, in an effort to solve Britain's continual crisis. Much depends on our ability
to organise society in a more rational manner
to eliminate unemployment, pollution etc.
to eliminate unemployment, pollution etc.
Microelectronics could assist in the creation
of a new society. This cannot happen over-
night, but where \(I\) am now, in Mozambique, engineers and technicians are beginning to
participate in creating a society which is pignificicant improvement on the old one. \({ }^{\text {Alan Taylor }}\) \({ }_{\text {People's }}^{\text {Mapub }}\) Replic of Mozambique

CITIZENS' BAND SYSTEM The letter from Mr Bryant in the October band communication system proposed in my article (August issue, p.61). Mr Bryant is kind enough to admit the proposal as a useful
addition to the facilities which the Citizens' Band Association wish to be legalised in this country. Whilst it would be possible to debate the relative merits of the many alternatives, I suspect that it would be pointless
because that which seems best is a matter of opinion and perspective. Try to convince a
motor-cycle enthusiast that his beloved machine is impractical just because it will not radio and enthusiasts have different aspects of the pot atial of the medium as their main As it is unlikely, if not undesirable, that all As it is unlikely, if not undesirable, that all
of the alternatives will be legalised, the
problem is one of choice It is problem is one of choice. It is my concern that the system chosen should be of greatest
benefit to the greatest number of people. Conventional c.b. is known, understood and
attracts a following of enthusiasts who attracts a following of enthusiasts who lobby
for its legalisation. The system which I proposed is not widely known and and understood and therefore demanded by those it would benefit, and in my opinion such a
system would be of most benefit to the nonenthusiast. I have in mind the person whose interests are occupied on other matters and has no desire to make a hobby of talking to people need to get messages to other people and the more quickly and efficiently it can be done the better. My proposal is simply to let
the technology do all the work of tracking the technology do all the work of tracking
down the person, delivering the message, and coniriming that it has been delivered. Be-
cause the system does all the work it is cause the system does all the work it is un-
likely to have much appeal for the enthusiast. Howard T. Tillotson

WHAT'S WRONG WITH TELETEXT
The analysis in your columns of the failure of teletexh system as seems to ignore the fact has very limited usefulness (July issue p. 61, August issue p. 33). The tv transmitted ver-
sions (Ceefax sions (Ceefar an slow forle) have bit rates
which are far too slonsmission of large bodies of randomly accessible information. While this could be alleviated to some
extent by the inclusion of more memory in extent by the inclusion of more memory in
the decoders, it seems to me to be a pretty fundamental limitation. Indeed, I suspect that broadcast teletext will eventually be relegated to providing optional programme
inserts such as subtitles for the deaf and for language minorities, and news flashes.
The Post Office's Prestel viewdata system, The Post Office's Prestel viewdata system,
with its almost infinite information capacity, with its almost infinite information capacity,
is a much more practical and useful system
and when it finally becomes generally avail-
able, sales of teletext/viewdata sets should
begin to 'take-off. Unfortunately it seems
that the decoder manufacturers are running up against Post Office monopolism with up against Post Office monopolism with
lengthy beaurocratic procedures necessary lengthy beaurocratic procedures necessary
to gain approval for equipment to be connected to the telephone system.
This is primarily a political lpom, and
the view that the P.O. monopoly and responthe view that the P.O. monopoly and respon-
sibility should end with the provision of a line to a point specified by the user and not
include equipment connected to that line has great merit. It should not be beyond the technical resources of the P.O. to install of the user. The relaxation of P.O.restrictive practices would also encourage the development of private sector telephone-accessible
data bases. How convenient it would be if one could call up Encyclopaedia Britannica and purchase directly the few kilo-bits one required instead of having to buy the complete
John
Belfast

With reference to the future of teletext which is selling slowly because we are all waiting for the price "o drop, what is required the other spare lines could be used to transmit full definition colour still pictures to go with the words.
I invite other readers to describe an elec-
tronic system displaying a complete pictur.

\section*{R. . . Soar
Mexboro}

With reference to Mr Brewster's letter (Sepreceiver may I refer him to the Pye Visa model? Although primarily intended as a desk-top viewdata terminal for the Post Office's restel service it does have full
television and teletext facilities. It has a television and teletext facilities. It has a
9 -inch monochrome c.r.t. The Pye Visa is
currently in production here in Malmesbury currently in production here in Malmesbury.
\(L\) Williams Pye TMC Limited
Malmesbury Wilts

MILIT Having ARY ELECTRONICS Having read C. D. Johnson's letter in the
August issue I feel that there it now hope
that this brief account that this brief account will be published.
During the years before the Second World War it was widely believed that the only way to have peace was to disarm. This folly was pursued by the peace-lovi.
outbreak of war in 1939 .
My generation in this country has never My generation in this country has never
seen war, and thankfully never will, but most of us know it is bloody, it is ruthless - but
most important - human beings die. Think of the fighter pilots or the rear gunners in World War II; young men who gave their lives for the sake of personal freedom, and
gave them horribly. Churchill said in a wider sense "Never, in the field of human conflict has so much been owed by so many, to so Have we the effrontery to say 'we in the
West no longer need to be technically superior.' If man makes a third mistake it will most certainly be his last.
Astor Gregory
Ashton-under-Lyne, Lancs
Letters continued on p. 84 ,
etters continued on p. 84

 .



 . 




\section*{Unijunction astables}
by Peter Williams, Ph.D., Paisley College of Technology


A device frequently used in simple pulse circuits such as for firing thyristors is the unijunction
transistor. It is of interest here for its relationship with other oscillators such as those based on transistor. It is of interest here for its relationship with other osciliators such as those based on
555 type circuits and transistor complementary pairs. It consists of a conducting region between base 1 and base 2 generally through \(n\)-type material with an emitter junction of \(p\)-type
material. The resistance base 1 -base 2 with the emitter open-circuit is a few kilohms. Base 2 is aken to a positive potential and the n-type material adiacent to the emitter takes up an intermediate positive potential by virtue of the potential divider action of the resistances represented as \(\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{B}}\). For emitter voltages below this level \(\mathrm{p}-\mathrm{n}\) junction is reverse biased, draws no currentan has no effecto emitter potential sufficiently positive, eurrent carriers are injected into the base 1 region. This increases its conductivity i.e. reducing its resistance and reducing the proportion of the supply voltage dropped across it. This increases the curren drawn through he emiter stik furt

If the current source is removed then \(R_{88}\) rises and the device is restored to its initial state. the complementary switch shown. This has been used in the past to model the behaviour of a thyristor in that it can be triggered into conduction by a positive voltage at the \(n-\mathrm{p}-\mathrm{n}\) base; provided current continues to flow through the p-n-p emitter this on-state is mainiained. In this mode the n-p-n collector/ \(\rho-n-\)-p base junction is assumed to be open. By tying the junction, as exceeded. Once that happens the transistors switch regeneratively into conduction, the collector of one driving the base of the other ever more strongly into saturation depending on corresponds to that of the intrinsic stand-off ratio of the unijunction transistor \(=R_{8} 1 /\left(\mathrm{R}_{\mathrm{B} 1}+\mathrm{R}_{\mathrm{B}}\right)\).
 stand-off ratio is easily controlled and modulated externally. Nonetheless circuits using the nijunction transistor and the complementary pair are broadly similar
The configuration most usually met involves an RC charging circuit with the active device voltage to zero until itis opened again. The function of sensing when the appropriate voltage (or time) has been reached is quite separate and in other circuits such as the 555 is performed via a separate pin on the package separately connected to the capacitor. Similarly sensing that the and can be performed via a third terminal (of the 555 circuit where pin 7 performs the switching action, pin 6 detects the upper level and pin 2 the lower level). In the unijunction transistor one erminal has to serve all three functions. Its behaviour has to change sharply from virtual when the external circuitry is no longer able to supply sufficient current again. Thus the unijunction transistor cannot readily provide a driven function as above though external pulsing of base 2 is a possibility.
It is well-suited as a free-running generator for which it provides the simplest possible circuitry. The capacitor charges exponentially until the voltage at the emitter brings the pn discharges the capacitor. As the voltage falls to a value just above the diode on-voltage no frther charge can be extracted from the capacitor and the current falls to a value limited by the charging resistor. This resistor is chosen to have a high enough value so that the current is original condition. Input voltage is now too low to inhibit this, being far less than the standoff voltage, \(\mathrm{v}_{\mathrm{s}}+0.6 \mathrm{~V}\). The charging cycle recommences. The charging resistance cannot be made too great or the current avaiable for initiating the switch-on action may not be sufficient.
Resistance is typically tens or hundreds of kilohms. The unijunction transistor can be replaced Resistance is typically tens or hundreds of kiliohms. The unijunction transistor can be replaced
by any other device exhibiting similar negative resistance characteristics and in the past neon lamps were used for just such a purpose. Certain pnpn diodes have similar switching characteristics.

Current is drawn from the capacitor in a short, sharp burst. It leaves the capacitor voltage as exponential ramp followed by a very rapid discharge and this waveform, approximating as it does to a sawtooth, has been used as part of alarm systems, and simple musical instruments.
For other applications the short duration current pulse is more useful, and it can be converted into a voltage by inserting a low resistance in the base 1 path. A compromise has to be struck between maximizing the pulse peak voltage and increasing the pulse width too greatly; both of circuits, and in particular is used with thyristor power-control circuits. Where the thyristor has to be electrically isolated from the control circuits a pulse-transformer is inserted in the base lead. This has the further advantage that the turns ratio can be adjusted to obtain the optimum pulse for the particular thyristor being driven. Pulse currents of up to 600 mA are possible by
this means. Antiphase pulse outputs can also be obtained; a resistance inserted in the base 2 lead will experience some current change since then the supply voltage is largely dropped
across \(\mathrm{RB}_{2}\).

\section*{THEORY}
- The upper threshold is set by the initial values of \(\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{B} 2}\) i.e. the
\(\mathrm{V}_{\mathrm{s}}+0.6\) where \(\eta=\frac{R_{B 1}}{R_{B}+\mathrm{B}_{\mathrm{B}}} \approx 0.63\) for many devices. The lower threshold is close to zero, though is clearly \(>0.6 \mathrm{~V}\) as below The lower threshold is close to zero, though is clearly \(>0.6\) as bel
that level there is no injected current to keep \(R_{81}\) in its low state.
- In the transistor circuit external resistors take the place of \(\mathrm{R}_{\mathrm{B} 1}, \mathrm{R}_{\mathrm{B} 2}\)
\[
\eta V_{s}+0.6 \text { with } \eta=\frac{R_{A}}{R_{A}+R_{B}}
\]
- If the switch is open from time \(t_{1}\) to \(t_{2}\), where \(t=t_{2}-t_{1}\)
\[
t=\pi \log _{0}\left(\frac{V_{3}}{V_{s}-V_{c}}\right)
\]
or \(\mathrm{t}=\tau\) which is a conveniently memorable condition
\[
\begin{aligned}
& \frac{v_{s}}{v_{s}-v_{c}}=e \\
& v_{c}=v_{s}\left(1-\frac{1}{e}\right) \\
& v_{c} \approx 0.63 v_{s}
\end{aligned}
\]
- This suggests that one of the reasons for using \(\eta=0.63\) in the design of unijunction transistors is to simplify calculation. The main reasons
'for making \(\eta\) of this order if that is much larger, the time at which triggering takes place if affected by small shifts in in \(V_{s}\) or \(\eta\) while if too small the long periods would demand excessively large timeconstants.
Discharge time is governed by the minimum value of \(\mathrm{R}_{\mathrm{B}}\), together《R and the last can be ignored during the discharge.
The current pulse is narrow and it is useful to know its width. This obviously varies along the discharge path but it is convenient to estimate it at some fraction of the supply \(\mathrm{kV} / \mathrm{s}\).
The discharge is assumed to be due to a linear resistor R comprising any external resistance together with the \(\mathrm{R}_{\mathrm{B}}\), value during its low-resistance state.
\[
t_{2}-t_{1}=\tau^{\prime} \log _{e}\left(\frac{-\eta V_{s}}{-k V_{s}}\right)
\]
\[
=\tau^{\prime} \log _{e}(\eta / k)
\]

Hence for \(t_{2}-t_{1}=\tau^{\prime}\)
\(\eta / k=e\)
Town 1-1/e) for many uniunction transistors
\[
k=\eta / e=\frac{1}{e}-\frac{1}{e^{2}}
\]
\(k \approx 0.23\)
e. the pulse width is around \(\tau^{\prime}=R^{\prime} G\) when the pulse has fallen to \(1 / 8\) of its intitial height, corresponding to about \(23 \%\) of V 。

\section*{EXAMPLES}
1. A complementary pair of transistors is used with a pair of equal esistors to simulate a unijunction transistor. Show that it will behave Treshold voltages and indicate any problems. Assume the supply voltage to be 9 V .
If the input voltage exceeds \(\left(\mathrm{N}_{\mathrm{s}} / 2+\mathrm{V}_{\mathrm{EE}}\right) \approx 5.1 \mathrm{~V}\) then the \(n-p-n\) rransistor begins to conduct. Id dives ine \(n-p\)-n device into conduction between the resistor junction and ground. The last falls to \(\approx 0.2 \mathrm{~V}\), the first to \(\approx 0.9 \mathrm{~V}\), assuming \(V_{\text {BElay }} \approx 0.7 \mathrm{~V}\); and \(V_{\text {ceserse }} \approx 0.2 \mathrm{~V}\).
If either the source voltage falls below 0.9 V or the current flow is severely limited by high source resistance, the \(n\)-p-n device comes out
of saturation, the resistor junction rises and both devices switch off i.e. of saturation, the resistor junction rises and
the thresholds are about 5.1 V and 0.9 V .
Series resistance is needed in one or both of the emitters to limit the current flow in the on-state.
2. The previous circuit is used with an RC timing circuit to obtain a pulse train in the \(n-p-\mathrm{-n}\) emitter of repelititon frequency \(\sim 5 \mathrm{kHz}\) and with charge transferred to the emitter load of \(>0.1\) mic coulombs per Charge in voltage across capacitor \(\approx 4.3\)
\(\Delta \mathrm{Q}=\mathrm{C} \mathrm{\Delta V}\)
\[
. C=\frac{\Delta Q}{\Delta V}=\frac{0.1 \times 10^{-6}}{4.3}=23.2 \mathrm{nF} .
\]

Nearest preferred value to ensure the specified minimum charge is
Discharge time \(\rightarrow 0\).
Charging time \(\mathrm{t}_{2}-\mathrm{t}_{1}=\tau \log _{e}\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)\)
and \(V_{1} \approx(9-0.9) \mathrm{V}\)
\[
\mathrm{V}_{2} \approx(9-5.1) \mathrm{V}
\]

But \(f=\underset{T}{1} \approx \frac{1}{t_{2}-t_{1}}\)
\[
5.10^{3}=\frac{1}{\text { R. } 27.10^{-9} \log _{6}\left(\frac{8.1}{3.9}\right)}
\]
\[
R=\frac{10^{6}}{135 \log _{e}\left(\frac{8.1}{3.9}\right)} \approx 10 k \Omega
\]
3. A unijunction transistor akith \(R_{\mathrm{Bl}} 2.1 \mathrm{k} \Omega\) and \(R_{\mathrm{B}} 1.6 \mathrm{k} \Omega\) has the temperature coefficient of \(+0.3 \% \mathrm{~K}^{-1}\) while the \(\mathrm{p}-\mathrm{n}\) junction drifts by \(-2 \mathrm{mVK}^{-1}\). An external low-drift resistor added in the \(\mathrm{B}_{2}\) lead is found o compensate the frequer Assply. Estimate its value

Then the voltage change across \(R\) is \(-3.3 \% \mathrm{~K}^{-1}\) Thus the voltage across r is given by
\[
\frac{0.3 \mathrm{~V}_{\mathrm{f}}}{100}=\frac{3.45}{1000}
\]

\[
\text { i.e. } V_{h}=\frac{345}{300}=1.15 \mathrm{~V}
\]

This meets the above assumption leaving 18.85 V across \(R_{B 1}+R_{B 2}\) \(\therefore R=\frac{1.15}{18.85} \cdot 3.8 \mathrm{k} \approx 232 \Omega\)

\section*{etters continued}

CARFAX DELAY
At the recent IERE Land Mobile Radio con-
ference at Lancaster University a erence at Lancaster thir
spokesman discussed their cellular mobile information service which is at present undergoing trials. The following points emerged: 1. Suitable receivers for Carf
the public less than \(£ 10\) each. 2. The cost of the system is to install and about \(£ 600,000\) p.a. to operate 3. The quantifiable saving to the country (in fuel and man-hours) if Carfax were in use by the majority of motorists is thought to lie
between \(£ 14\) million and 660 million p.a. 4. Even if the trials are successful it will be five years before Carfax is introduced. Such a delay seems disgraceful. Most detraffic information systems - why should we always be ten years behind?
If the Government really cannot afford to
invest \(£ 3\) million to save the country an invest \(£ 3\) million to save the country an
annual \(£ 14\) million-plus perhaps the manufacturers of Carfax receivers could
fund the system's installation. Five years' fund the system's installation. Five years'
delay is intolerable. James Bryant
James Bryant
President, Citizens Band Association
Cheltenham, Glos.

BROOKMANS PARK
TRANSMITTERS
It was with some surprise that I recently
heard of the dismantling of the Brookmans heard of the dismantling of the Brookmans
Park radio transmitters. It would seem that the BCC has no thought of the historic
importance of this equipment, huilt in 1929 for the dual programme networks. These transmitters formed the link between our statesmen and the populace during
the last war and indeed for many crises the last war and indeed for many crises
before and since then. Who has not, at some time over the years, tuned into one or other of the BBC radio transmissions and given
some passing thought to the miracle of wireless? Quite possibly they were listening to the output of one of these transmitters
now quietly dismantled after fifty years of now quietly dismantled after fifty years of
service. service.
A great shame, then, that the BBC should
destroy its own heritage and, indeed, that of destroy its own heritage and, indeed, that of
the nation. With such a history conscious the nation. With such a history conscious
country as ours, surely it is not beyond the
wit of the BBC to see that a further source of income has been thrown away. With the vast range of abilities within the BBC , surely even
an apparently dull engineering museum an apparently dull engineering museum
could have been made attractive at very little
cost.
The BBC seems to have missed the boat, for the scheme still survive elsewhere, unheralded, and await the scrap man's hammerr? If they do then surely this early tech-
nology should be saved rather than be lost for

\section*{ever.
G. L. Child
Feli istowe-}

Felixstowe
Suffolk
The BBC replies
We are also sorry to see the passing of such
reliable and well-known machines. A difficult decision has to be faced when the time comes
for the replacement of old equipment, parti-
cularly that having significant historica associations. There are many of us who
would like to see such things preserved fo posterity but not many who are able to provide the required space and cost of power broadchast transmissions is both larg and heavy, and it has to be accepted that interest in them is limited to a comparatively mall number of specialists. However, the thinks.
Part of one transmitter (incorporating the low-power drive and modulator stages) has been presented to the manufacturers (Mar oni) who, we understand, will preserve it, passed to the British Vintage Wireless Society. Furthermore, there are two simila Moorside Edge and Washford which for the present continue to serve as standbys. eoffrey Sturge
Engineering Information Department

FAILURE OF DISTRESS SIGNALS AT SEA
I agree totally with Mr Wiseman's remarks in une letters about salt spray on aerial insu weather when I have been unable to operate properly on 500 kHz due to salt on the aeria
insulators -a nominally 1.8 kW outpu transmitter only putting out a few watts and having difficulty in contacting a coast station only a hundred or so miles away.
This effect has been aggravated by the
tendency of modern ship owners to fit high power transmitters but shorter and les efficient aerials. A few years ago a ship would se fitted with a good T or inverted-L aerial and as high as the masts would allow wire around the funnel. This is not very efficient on h.f., let alone on 500 kHz . The larger aerials didd not suffer so much from nsulator problems due to their higher radialators is only a temporary solution as an hour or so later in heavy weather the problem reappearects are similar if not quite so bad. It is certainly high time someone had close look into merchant marine aerials and shipowners could be pressed to fit better aerial systems. As Mr Wiseman has stated, it is not normally possible to go outside in
force 9 or 10 gale and wash down the insul force 9 or 10 gale and wash down the insula message can be sent!
R. Philpot
Offenburg

Offenburg
West Germany

CAPACITANCE METER With regard to the capacitance meter the indicated value of the capacitance, due to measurement non-linearity, is basically not usually more than about \(3 \%\). However, on the
1000 pF range, \(20 \%\) errors have occurred with some HEF 4049 i.c. samples, together wit some HEF4049 i.c. samples, together with
higher than normal sensitivity on this and
the 100 p f range. This is caused by ringing after the square wave edges on the wires to
the measuring terminals. The ringing is excited by the fast edges of the square wave produced by the i.c. and if the output imped-
ance of the i.c. is low enough, the measured capacitor can charge and discharge during the ring, as indicated in the second paragraph
on page 62 of the article. Since the ring is capacitor size dependent, this gives rise to the non-linearity. In practice, the effect is ranges.
This error/excessive reading can be corThis error/excessive reading can be corrected fairly simply by increasing the output resistance of the.offending i.c. with a resistor
of about 100 ohms, fitted at the common i.c. pins 2,4 and 10 to which the lead to \(S_{1}\) connects.
A second effect has occurred in circuits with rather long wiring which can be noticed by the CAL control not always working 10,000 pF range. This was traced to parasitic oscillation which caused the square waves to be produced in bursts and to be CAL setting dependent. It ceases if a 1 k resistor is fitted
by the i.c. at pins 11 and 15 to which the lead which goos to \(\mathbf{S}_{2}\) connects.
The resistors have little effect upon calibThe resistors have little effect upon calib-
ration accuracy, once the present calibration ration accuracy, once the present calibration
resistors have been readjusted and so are worth fitting as standard practice.

\section*{K. Holford}

Crawley
Sussex

PROGRAMMABLE NOTES FOR MUSICAL

\section*{INSTRUMENTS}

Keyboard instruments have hitherto been generally confined to the equal tempered scale. This scale is an approximation to the bears a simple mathematical rhich each not either the keynote (or tonic) or to the fifth note (or dominant). Music played using an harmonious than when played on an instrument tuned to equal temperament. Unfortunately, the true scale produces. problems
when when modulation is attempted, requiring
several different pitches for the same note depending on the key in question. This produces problems in instrument design and playing problems
array of keys present.
An alternative electronic solution must now be possible by using program mable tone generators and recalculating the frequencies
required for modulation into the new key, thus allowing a standard keyboard layout to be used. The major problem with this
approach comes from the need to inform the approach comes from the need to inform the
machine of the required key as the piece of music is being played. This could possibly be solved by pre-programming the key
sequence of the piece of music and using a sequence of the piece of music
pedal to initiate the key change. I am sure there are many other problems
that will require attention, but the end result that will require attention, but the end result when all are solved would be a keyboard
instrument sounding smoother and more harmonious than anything we have at present.
\(M\). Robins
Bilton
Rugby

\section*{Hall-effect magnetic field detection}

\author{
Simple circuit for use in fields down to \(10^{-3}\) tesla
}
by D. Wedlake, University College, Cardiff

A HUNDRED years ago in November
1879 E. H. Hall, Fellow of the Johns 1879, E. H. Hall, Fellow of the Johns Hopkins University in America, discovered the effect bearing his name.
Basically, it is the generation of a voltage at right angles tó a current in a conductor or semiconductor when placed in a magnetic field applied per pendicular to the current. The effect is illustrated in Fig. 1 .
The open-circuit Hall voltage is given
\[
\begin{aligned}
V_{\mathrm{H}} & =K I_{\mathrm{c}} B \sin \theta \\
& =K I_{\mathrm{c}} B \text { if } \theta=90^{\circ}
\end{aligned}
\]
where \(K\) is a constant at one particula temperature, \(I_{c}\) is the control current, \(B\) angle between the magnetic flux direction and the plane of the Hall element. Any non-symmetry in the Hall effect device will lead to a voltage offset in the absence of any magnetic field and it wil external circuitry. Adjustment will however, have to be carried out with each change of temperature, since the offset voltage varies considerably with temperature.
Until rece
the measurement of magnetic field strength has not been readily available to the amateur, probably owing to the high cost of the sensors and rather complex electronic circuitry. Neverthe
less, the circuit shown in Fig. 2. shows how relatively low-cost ferrite Hall effect devices, when driven by constant current, can be used to build a simple magnetic fluxmeter. The probes them-
selves are Siemens Type SBV566, obtainable from Electrovalue. Care should be taken when mounting them and it is probably best to fix them on to a small piece of Veroboard and then to make connexions to the copper strips.
The Hall probes are driven by a constant-current regulator, capable of delivering up to 70 mA , which is their maximum rating: a suitable regulator is shown in Fig. 3. The Hall output voltage between terminals 3 and 4 is fed to a
differential-input 741 amplifier, which has a voltage gain of 10 . It should be noted that the Hall voltage leads and control-current leads can be in terchanged and that the direction of the control current does not matter. This
means that when driven by a constant current damage to the probes is unlikely.


The output from the amplifier may be onitored on a d.v.m. or \(100 \mu \mathrm{~A}\) meter as required. The standing offset voltage is cancelled out with \(R_{1}\), and \(R_{2}\) acts as a sensitivity control for the meter. With the circuit shown it was found \(10^{-3}\) tesla could easily be detected giving a final output of about 300 mV . With exceptionally strong fields it might be necessary to reduce the cononly disadvantage with the circuit was only disadvantage with the circuit wa
the relatively high temperature coef ficient of the probes themselves. If this

Fig. 4. Equipment described being used to plot the magnetic field distribution along an iron rod. Result is plotted by pen recorder. Power supply on left, amplifier in centre and Hall probe in middle of rod.
is likely to be a problem it is best to near zero temperature coefficient. 1 tesla \(=10,000\) gauss. As a guide, the
flux density produced by an R.S. Components reed magnet (Type 349-052) 3 mm from the surface is about \(13 \times\)

\section*{THE HALL EFFECT} Hall's original paper was published in the
American Journal of Mathematics in Amvember, 1879. He had been intrigued by
reading reading two contradictory accounts, by Prof,
Rowland and Prof. Edlund, of the effect of a magnetic field on the current in a conductor. Rowland maintained that the resultant force
acted on the conductor, while Edlund believed acted on the conductor, while Edlund believed
that the mechanical force was directed at the current in the conductor.
Hail determined to experiment and, with Hall determined to experiment and, with
Rowaland's approval and assistance, conducted Rowland's approval and assistance, conducted
a series of tests on metal. In the beliet that, if the
current were drawn to one side of the conduccurrent were drawn to one side of the conduc-
tor, the resistance of the' conductor would tor, the resistance of the conductor would
appear to decrease, he made the tests with
German silver wire in the form of a spiral. The appear to decrease, he made the tests with
German siver wire in the form of a spiral.
wire we was of 0.5 mm diameter and possessed a wire was of 0.5 mm diameter and possessed a
total resistance of \(2 \Omega\). The result was far too small a variation in resistance for the tests to be
conclusive (about one part in five million). Going on to test for a potential difference
between the surfaces of the conductor - a between the surfaces of the conductor -a
piece of gold leaf - Hall found a galvanometer piece of gold leat - Hall found a galvanometer
deflection, which reversed when the field was
reversed, and proved that it was the current that reversed
moved.
\(10^{-3}\) tesla. Or, the horizontal components of the Earth's magnetic field in Britain is about \(18 \times 10^{-6}\) tesla

References
1. Hall, E. H., "On a new action of the Magnet on Electric Currents," American Journal of
Mathematics 1879, Vol. 2 p. 287 .

Electronic speedometer continued from page 76

Although it seems more correct to rientate the magnet so that a positive voltage is induced in Tr,'s winding a he pick-up circuit appears to work atisfactorily if the magnet is orientated in the opposite direction
in the opposite direction.
The \(270 \mathrm{k} \Omega\) positive feedback resistor around the op.amp., introduces a small amount of hysteresis into the circuit which reduces its susceptibility to in uced spurious pulses
following the 709 op.amp. is included to produce an output pulse compatible with the c.m.o.s. input stage of the digital timer.

Practical details
In the circuit of the digital timer, the duration of the monostable pulse must be greater than the longest pulse generated by the clock oscillator, but shorter than the time taken for an out second decade counter when the oscillator is running at its highest speed. For a maximum f.s.d. for the speedometer of \(100 \mathrm{~m} . \mathrm{p} . \mathrm{h}\). and a range of heel diameters from 10 in to 60 in , the highest frequency of the oscillator wil frequency of the oscillator will be
\(704,000 / 60 \pi=3.73 \mathrm{kHz}\). The duration of the monostable pulse must be greater \(400 / 22.4 \mathrm{kHz}(=17.8 \mathrm{~ms}\) ). By making the monostable resistors \(100 \mathrm{k} \Omega\) and the capacitors 100 nF each a pulse duration
of about 1 ms is obtained which satis of about 1 ms is obtained, which satis-
factorily meets the frequency requirements.

\section*{Books Received \\ Microprocessors and Microcomputers, by Microprocessors and Microcomputers, by
Eric Huggins, is one of the series of Mac-
millan's Basis Books in Electronics. It is not related to any particular course of instruction, but assumes that the reader is innocent
of any electronic or computing knowledge, of any electronic or computing knowledge,
starting with a few words of historical exStartung with a few. words of historical ex-
planation and finishing with the loading and running of programmes. Along the way, Mr Huggins covers most of the essential know-
ledge for the successful application of small systems, even a little Boolean algebra, so that
the AND and NOR instruction the AND and NOR instructions in a program can be understood. The book is better than
most at this level, but the author gives way too readily to the temptation of the 'chummy' approach. A difficult subject is not made metaphorically sitting with the class instead}

A 'polarity' input to the quad latches determines whether they are clocked by positive-going or negative-going pulses.
In the circuit of Fig 1 they are clocked In the circuit of Fig. 1 they are clocked by negative-going pulses and the 'polarity' input is therefore connected to ground: The read-out meter may be any of 2 volts.
of standing at the blackboard, and the use of the pronouns 'we and 'uw' throughout is not a good idea. Little drawings of fairies and
elves do nothing to help his purpose, either. The book is published in paperback at \(£ 4.95\)

A World in Your Ear is the autobiography of
the late Robert wood, who has been in the late Robert Wood, who has been in
charge of the technical aspects of BBC charge of the technical aspects of BBC out-
side sound broadcasting from the early days. It is very personal, completely non-technical
and is full of background to well-known and is full of background to well-known
events of the last 50 years. There is for events of the last 50 years. There is, for
example, reference to the famous broadcast example, reference to the famous broadcast
by Tommy Woodroffe of the Spithead
Review, when the phrase 'Te Review, when the phrase 'The Fleet's lit up!'
took on a new significance. Mr Wood handtook on a new significance. Mr Wood handmany other politicians and ran so many
broadcasts by the Royal Family that he broadcasts by the Royal Family that he
became 'one of the family'. The book is
publige bublished by Macmillan at \(£ 6.95\).


\section*{IS YOUR CASSETIE DOING YOUR DECK MORE HARM THANGOOD?}

The wrong cassette can seriously affect your deck's performance.

And not surprisingly, when your deck suffers, so do your ears

But, unfortunately, matching the right cassette to your machine is far from being a simple process.

At the last count there were over 50 makes of cassette and over 1,000 decks.

And enough wow and flutter figures to send Pythagoras round the bend.

A far cry from when we first invented the cassette.

In those days, there was no problem in matching the cassette to the deck.

We made all of both.
Of course, a lot of tape has run round the reel since then.

That's why we tested our present range of five cassettes on almost every popular cassette deck around.

A few results may surprise you.
We found, for instance, that a small number of the most expensive ww - 012 FOR FURTHER DETARS
lecks didn't necessarily work best with our most expensive tape.

And that a handful of the middle priced decks did.

We also found that it's foolish to generalise about certain makes of tape being right for all Japanese decks or all European decks.

Our findings are available on a pocket chart that lists almost every popular deck with the cassette that matches it most perfectly.

You'll find one of them at your local dealer.

By consulting it you'll be doing your deck a lot of good.

Simply years ahead


THE COMPREHENSIVE RANGE
FROM THE INE COMPREHENSIVE RANGE

ḂUY 16K RAM BOARD

Radio clock 12-hour display
Constructors of 24 -hour radio clocks (or their wives) may prefer the more common 12-hour display. This circuit converts the Rugby time code to a 12 -hour
coding with an optional BST display coding with an optional BST display.
\(\mathrm{IC}_{1}\) detects 00 hours and adds 1 to the tens of hours and 2 to the units. If the BST marker is high, 1 is added to the units via the connection to the \(2^{0}\) input
on the adder. Gates IC on the adder. Gates \(\mathrm{IC}_{2 \mathrm{a}}, \mathrm{IC}_{3 \mathrm{a}}\) and \(\mathrm{IC}_{3 \mathrm{~b}}\)
detect 13 to 19 hrs, add 14 and detect
the tens of hours output so that 12 is subtracted from the hours. \(\mathrm{IC}_{4 \mathrm{a}}\) allows 12 hrs in BST to be included. The remaining gates convert 09 hrs and 21
hrs in BST and 20 hrs to 23 hrs . The hrs in BST and 20 hrs to 23 hrs . The
inverter connected to the tens of hours output prevents a zero in multiplexed displays by generating an invalid input code for the 7 -segment decoder. In non-multiplexed displays using a 4511 ,
the \(2^{2}\) output can be connected to the \(\overline{\mathrm{B}}\) pin. If the BST option is not required \(\mathrm{IC}_{4}, \mathrm{IC}_{5 \mathrm{G}}\) and the connections to the BST marker can be omitted.
A. M. Tucker

Dorset

Simple pulse splitter Five logic gates can be used to split a pulse-width modulated signal into its component parts. The basic circuit can only distinguish between two different accommodate more. The time constant
is set to give a pulse train at B with a pulse width greater than x and less than y . Pulse width z is approximately 1.4
RC . \(\xrightarrow{\text { RC. Flatt }}\) Birkenhead



\section*{Dual supply for power} control
When designing power control circuits which use operational amplifiers, a dual supply is usually required. If the unit is to replace a normal switch, power can across the switch terminals. Consequently, a compromise must be accepted for the maximum power into the load. In practice a reduction in maximum power is not discernable provided that the phase angle at whic In the circuit \(\mathrm{R}_{1}\) and \(\mathrm{C}_{2}\) an \(30^{\circ}\) mpedance to the Zener diodes which regulate the valtage supplied to the moothing capacitors. Just over \(\pm 2 \mathrm{~mA}\) can be drawn under worst case condi-
tions, i.e. with maximum power. The values shown in brackets are suitable for a \(\pm 5 \mathrm{~mA}\) supply. Ripple is about 0.1 V pk-to-pk and this is difficult to reduce

Variable delay
Three 555 timers can be used to delay a pulse of unknown width \(t\) withou \(\mathrm{IC}_{2}\) are triggered at the positive an negative edges of the input pulses res pectively. The required delay \(t_{d}\) is set by input pulse and the output of \(\mathrm{IC}_{2}\) are added and fed to the reset of monostable \(\mathrm{IC}_{3}\) whose time constant must be larger than \(\left(t+t_{d}\right)\). \(\mathrm{IC}_{3}\) triggers on the negative
edge from \(\mathrm{IC}_{2}\) i.e. after \(t_{d}\) and is reset at
point \(P\) as shown in the waveforms. The output waveform is therefore delayed by \(t_{d}\) and its duration is preserved. With the component values shown, delays from \(50 \mu \mathrm{~s}\) to 1.15 ms are available. Other delays can be obtained by altering the
time constants, but the input pulse period must be equal to or larger than the delay.
S. Bhat

Bangalore
India.
thout a current penalty. Increasing hees value of the electrolytic capacitors ference. Quiescent current into the loa just sufficient to cause a 15 W lam filament to glow.

This circuit is not suitable for appliontact with a conductor. to come into

Price
Kent



WIRELESS WORLD, NOVEMBER 1979

\section*{Reference voltage}

\section*{indicator}

This circuit makes adjusting the anode voltage on cold-cathode displays both quick and accurate. The differential pair.
compares a fraction of the h.t. voltage with a nominal 16.8 V reference. In this example the h.t. is \(180 \mathrm{~V} \pm 1 \mathrm{~V}\). The red 1.e.d. is illuminated if the sample voltage
is above the reference' level and the yellow 1.e.d. if below. There is a 2 V tuning range where both l.e.ds are on and equal brightness indicates the balance point. The circuit can operate
with a wide range of voltages by changing the appropriate component values, but the narrowest tuning range is obtained when the ratio of h.t. volts/ reference voltage is less than fifteen.
Accuracy is within \(0.1 \%\) and drift is Accuracy is within \(0.1 \%\) and drift is \(0.05 \%\) over a six month period.
C. J. Challender
Wolverhampton

\section*{Reversible ternary \\ \section*{prescaler}}

During the development of a digital Wattmeter it was necessary to prescale a synchronous reversible decimal values on a display. The main counter comprised a set of parallel-clocked 4029s with sign-reversal logic to control the state of the up/down pins. Therefore, a reversible synchronous ternary down control, preset and carry-out was required.
The original idea was three bistables connected as a bi-directional circular shift register with 010 circulated as
appropriate. This system requires at least three i.cs and has several unwanted states. However, as the state of any bistable will be the NOR of the


other two, the output \(\mathrm{Q}_{1}\) of one bistable can be obtained by using diodes to form two. This was achieved using a 4013B with each \(D\) pin driven from one of the other two Qs selected by a 4053 B analogue multiplexer. A third part of the 4053 out signal. This circuit operates up to MHz with a 5 V supply, but higher requencies can be achieved by using a normal NOR gate to generate \(\mathrm{Q}_{1}\). The tates, or to a fourth which represents states,
zero.
If t
which are rounded thirds of 10 , the circuit can drive a seven-segment dis and \(g=3\). If the ternary counter does not drive a display digit, the value displayed from the decimal stages will is in sign and magnitude form, the truncation is converted into a rounding by incrementing the whole counter by one before transferring the contents of he decimal section to the display
J. R. Stockto

National Physical Laboratory Teddington

\(Q_{0}-\int Q_{2} \rightarrow Q_{1}\)
Alternative \(Q_{1}\) logic

\begin{tabular}{l:l}
\(\bar{C}_{0}\) & counting up: \\
\(Q_{0}\) & If counting down, \\
\(Q_{1}\) & \(Q_{0}\) and \(Q_{2}\) \\
\(Q_{2}\) & exchange roles \\
\hdashline\(Q_{0}\) always \\
clock & follows \(Q_{1}\) \\
\hline
\end{tabular}

WIRELESS WORLD, NOVEMBER 1979
where \(S \alpha\) is the total absorption in
Sabines, and \(\alpha\) is the average absorption coefficient for all the room surfaces. \(R\) is indicative of the acoustical 'load presented to the sound source. From this data the sound radiated can be Sound power =
Sound pressure \(-10 \log _{10}\left(\frac{1}{2 d^{2}}+\frac{4}{R}\right)\)
\(\left.\frac{4}{R}\right)^{(4)}\)

During the past few years sound power measure of acoustic noisiness because of its more fundamental character. In the ifif field it is becoming customary to efficiency of loudspeakers and the directivity in terms of " O " or the irectivity Index (see the author's article the October issue). In all these applications it is necessary to measure
sound power. This article describes a new technique that makes sound power easier han electrical power to measure. It is highly probable that this technique will eplace the classical methods currently standards.

SINCE the development of sound ressure level meters early in the 1930 statement of the sound pressure leve has generally been used as an indication usually without recognising that the sound pressure level was a function of he distance of the measuring poin rom the source. It might also b f the space in which the noise source was being operated. A statement o sound pressure level as an indication of noisiness is just about as sensible a uoting the terminal voltage of a vailable from the generator
In the early 1960s the heating and entilating industry moved toward quoting sound powers as an indicatio of noisiness, recognising that the sound from the source and independent of th acoustics of the environment. However it should be remembered that loudness, noisiness or annoyance is not directly proportional to sound power and that ribution of the sound power over th frequency band, is necessary if eithe ound pressure or sound power data is being provided
Sound power, the acoustical equ valent of electrical power, cannot b
measured directly for we have no in measured directly for we have no in
strumental method of measurin volume velocity, the acoustical coun erpart of electrical current. Nor hav e any commercially available method is components, though laborator techniques are available. The onl coustical parameter that can b
directly measured by current commer
cially available instrumentation is sound pressure.
In the absence of volume velocity or power can only be calculated from sound pressure data by making assumptions about the acoustica impedance presented to the source of sound power. Though volume velocity measured directly, there are two techniques that have been widely used, a least in university laboratories, for measuring sound power by semi indirect method
One of the earliest methods of measuring sound power, well covered in the
literature, is to measure the sound pressure distribution over the surface of a notional sphere or hemisphere centred on the sound source. In the simplest adion when the source is small and free space, the sound power can be calculated from the measured sound pressure averaged over the surface of a sphere of one or source
In this simple case it can be shown measured sound pressure by the relation:
PWL \(=\) SPL \(+10 \log _{10} 4 \pi d^{2}\)
\(d=\) distance to measuring point in
metres.
metres. In the more practical situation where plane surface, the radiation is confined to a hemisphere above the plane and the sound power flow through the notional enclosing hemisphere is doubled and

can be calculated from equation 2 . Measurements of the sound pressure distribution must be made in the open PWL = SPL \(+10 \log \mathrm{D}^{2} \mathrm{~d}^{2}\)
PWL=SPL \(+10 \log _{10} 2 \pi \mathrm{~d}^{2}\) (2)

Both these procedures are covered by a British Standard No. BS 4196, so the
techniques need not be further discussed except to note that they are largely irrelevant in practice. Few devices radiate uniformly and in consequence a true average sound pressure cannot be obtained without taking
between ten and thirty readings round the source. The sound pressure level usually varies so widely over the measuring surface that the sound levels cannot be directly averaged and the readings must be converted to sound converting to sound pressure level in dB.
While the technique can be used to measure the sound power output of
small simple sources, it cannot be used small simple sources, it cannot be used large industrial machine that may be required to drive, or be driven, by a second machine or may require a supply of air, water or gas to allow it to func A second so
technique is based on ther measuring of the sound pressure produced in an environment offering a known acoustic load to the power source. The sound room for which the absolute values of the reverberation time/frequency relation are known, generally obtained from measurements of the reverberafrequencies in the audio frequency frequencies in the audio frequence
band. From this data and the dimensions of the room a parameter \(R\) is obtained:
\[
R=\frac{S \alpha}{1-0}
\]

Fig. 1. The Type 4205 Sound Power Source made by Briuel \& Kjaer.
radiation of the noise from a typic machine
Thus in general the two techniques covered by existing national and international standards require the apparatus being measured to be taken to a special room of accurately known vantage of the techniques are such that neither method is widely used in practice except for the measurement of the sound power autput of small items such as domestic appliances
All the practical disadvantages and be avoided by the use of a substitution technique in which a source emitting an accurately known and adjustable amount of sound power is substituted for the machie under test. This elimin the acoustic characteristics of the enclosure for the room reacts on the sound power source in the same way as it does on the equipment being weasured. Thus the sound power output of a machine The need for air, water or gas supplies presents no particular problem as the sound power output can be measured while the machine is mounted on the generally has very indeterminate physical boundaries that cannot be acoustically defined.
In Applied Acoustics for January 1974 the writer described a relatively simple
solution to the sound power measurement problem. The instrumental power source consists of a loudspeaker in a special housing driven by a source of shaped white noise and directly callo wated in terms of sound power ourpuce zero level of \(10^{-12}\) watts. A commercial model of the device is now available as the Brüel \& Kjaer Type 4205 Sound ower Source, illustrated in Fig. 1. power having the frequency spectrum shown in Fig. 2 and typical of the noise spectrum that characterises a number of domestic appliances, but the accuracy of measurement is not significantly the spectra of the source and the machine being tested. The 4205 unit will also radiate noise in each of the standard octave bands between 125 Hz and 8 kHz . The speaker system design ispherical radiation.
The power source can be used to measure the sound power output of machine or a loudspeaker in severa differest down the simplest possible technique is adequate. The machine is run and the sound pressure level measured at some poin surficiently far from the source to ensfield where the SPL is substantially independent of the distance to the source. In most environments a point

93


Fig. 2. Typical sound power spectrum or the 4205 Sound Power Source measured in third octave bands.
factory. The machine is then shut down and replaced by the Sound Powe Source and, using the sound pressure position, the output of the power sourc is adjusted to reproduce the soun pressure level achieved by the machin being assessed. The sound power output of the machine can then be read direct off the meter scale on the sound powe the process is repeated, selecting th same octave band on the sound leve meter and the sound power source and reading the power output directly of power source achieve the same sound pressure level. It is worth noting tha the accuracy of the sound pressure leve measuring instrument is not involved in the sound power assessment for it is SPL measurements.
If the machine cannot be shut down an alternative technique can b mployed. The arrangements are exactly as before but the sound powe pressure level due to the machine by 3 dB and the power output read off the meter.
The accuracy that is achievable is generally higher than is commerciall necessary. Table 1 illustrates the degre he acoustics of the environment. A domestic vacuum cleaner was mea sured in all the situations briefly de cribed in the table with the result experience is necessary to achieve such results.

TABLE 1

\section*{Room \\ Sound power (dB)}

\section*{1. Open air - two acre field \\ 84
83.9}
\(20 \mathrm{ft} \times 14 \mathrm{ft} \times 8 \mathrm{ft}\) high
3. Typical laboratory
\(20 \mathrm{ft} \times 12 \mathrm{ft}-\) no carpe
. \(14 \mathrm{ft} \times 12 \mathrm{ft}-\) part carpeted
5.
\(13 \mathrm{ft} \times 9 \mathrm{ftt}\)-carpet and curtains
83

The precautions that need to be taken when measuring sound power are few and are largely common sense. Wher most of the noise is radiated from an opening or a small area of the machin

94
source should be placed as near this opening as can be managed. If the noise
is radiated from several openings then either several sound power readings should be taken with the sound source near each opesitioned near the acoustic centre of the machine.
Neither the machine under test nor the sound power source should be located in any corner of the room, but if
this cannot be avoided then two readings of the sound power emission should be taken with the machine and sound power source interchanged and the average taken. The advisability of avoiding corner locations for either
sound source or the device under test applies also when making sound power output determinations on loudspeakers, 'for the low frequency power output of any ordinary speaker is very dependent on its position in a room and is
significantly changed by standing the speaker system close into a corner.
The basic accuracy of the source can be checked in a simple manner. The is provided to hold the microphone of a calibrated sound level meter. Each octave band and the wide band outputs
a set of scale values provided with each instrument. With the sound pressure levels adjusted to these values the
sound power output can be read directly sound power output can be read directly
off the meter scale with the accuracy typical of an analogue meter system and the care taken to calibrate the sound level meter. However, the stability of the system is more than adequate.
Calibration of our first model at interCalibration of our first model at inter-
vals of two years indicated a change or vals of two yea.
less than 1dB.
We use the sound power meter in a wide variety of industrial situations where it is necessary to measure the noise power of a machine working in an
industrial environment, but the deterindustrial environment, but the deter-
mination of the efficiency or Directivity Index of a loudspeaker are typical sound reproducer applications. The electro-acoustic efficiency of a loudspeaker is the ratio
\[
\begin{aligned}
& \text { Acoustic power output } \\
& \text { Electrical power input }
\end{aligned}
\]

Determination of the electrical power input presents a greater problem than the determination of the acoustic power
output, an interesting reversal of the situation that has held for many years. The power input to the loudspeaker is acoustic power factor.
We measure the acoustic output of the loudspeaker in a normally furnished
listening room, the loudspeaker standing in the middle of the floor with the sound level meter about two metres away. The voltage across, and current
into, the speaker system are measured with true r.m.s. instruments at a power level usually around 1 watt and using both the wide band pink noise and octave bands of pink noise. It is worth

WIRELESS WORLD. NOVEMBER 197
pointing out that the power output at the low frequency end of the spectrum speaker in the room, being greatest with the speaker on the floor in a corner
Data on the electro-acoustic
efficiency of the loudspeaker is of direct. efficiency of the loudspeaker is of direct. value, buring the Directivity Index (British) or "Q" (American) of a loudspeaker system. " Q " is the ratio of the sound power actually radiated to the sound power that would be radiated if the sound pressure level measured on
the axis of the speaker system was representative of the sound pressure distribution all round the loudspeaker. The Directivity Index is \(10 \log _{10} \mathrm{Q}\). The significance of this parameter in determining the sound quality of a system
has been discussed in the October issue of Wireless World, so readers are referred to this for a more complete discussion of the subject.
A determination of the " Q " and the Directivity Index requires the measurement of the acoustic power output and
the sound pressure level at some point the sound pressure level at some point
on the axis of the loudspeaker when it is driven by a known amount of power. To be of real value the parameter should be measured in the standard octave bands
over the audio frequency range. The axial sound pressure should be measured in the open air or in an anechoic
space, but it can be measured with the loudspeaker in a normally furnished room if the longest dimension of the speaker does not exceed about 1 metre. sound pressure level at a distance of either one or two metres, the power (ref. \(10^{-12}\) watt) radiated into a hemisphere
by an isotropic radiator being 10.5 dB by an isotropic radiator being 10.5 dB one metre and 17 dB higher than the sound pressure level at two metres. The sound power output is measured by the substitution technique already
described with the loudspeaker standing on the floor in the middle of the room. The sound pressure level produced at some reference point not closer than about 3 metres to the speaker is duplicated by adjustment of standing in the same position and the power level read directly off the meter
in the sound power source. " \(Q\) " is then:
\(\mathrm{Q}=\frac{\text { Calculated sound power }}{\text { Mer }}\)
n the frequency range below about
1000 to 1500 Hz the " Q " is generally
below about four, but it usually climb rapidly at frequencies above 1500 Hz .
This technique for measuring sound ower employing the Type 4205 Soun
ower Source makes acoustic powe measurement almost as simple as a measurement of electrical power. It is under consideration by two committees by the appropriate committees of ISO and IEC for adoption as an internationa standard.
It makes possible the measurement of sound power in industrial situation impossible, and provides results o adequate accuracy in about \(1 \%\) of the ime required to set up and operat ither of the two claws measuring sound power.

\section*{References}

Guide to Methods of Measuring Noise Emitted by
1967.
Method 0 Method for the Designation of Sound Powe
Emitted by Machinery. ANSI S1.23-1976. Emitted by Machinery. ANSI S1.23-1976. Establishing a Loudspeaker's Directivity
Figure of Merit, Don Davis, AES Reprint 117 (M6).
Field Measurements of Directivity Factor of
Loudspeakers, Don Davis, AES Reprint No. Loudsp
1031. .

How I invented the thermionic diode

Our front cover this month is a reference to the fact that November is the 75th anniversary of the invention of
the thermionic diode, for it was on November 16, 1904, that Fleming filed his patent for "a two-electrode valve for the rectification of high-frequency
alternating currents". It would be rash alternating currents". It would be rash any particular device, but there is no doubt that Fleming's diode ushered in the thermionic valve era and, as distinct from earlier scientific work on electrical discharges through gases and
vacua, was invented for a practical purpose in communications technology. The following account by Professor Fleming himself, extracted from his book "Fifty years of electricity"
published by Wireless World, shows how he saw the possibility of using the Edison effect for the particular require ment of detecting oscillations in wire less telegraphy receivers.
""There is a fourth method for creating There is a fourth method for creating importance, called the valve method which has developed out of an inven tion made by the author in 1904 of the electric waves.
"We have already explained that in
the spark system of wireless telegraphy the electric vibrations in the aerial wire are created by the discharge of a con-
denser across a spark gap. These oscillations, therefore, come in groups or trains corresponding to each spark, and as there may be from 50 to 500 sparks per second there are 50 to 500
trains of oscillations and therefore, radiated waves, each of which may contain 20-100 oscillations or waves. The interval of time between two successive movements of electricity or waves may be of the order of a millionth or a half a
millionth of a second. These vibrations are too quick to affect a Bell telephone or even the human ear. If we convert the oscillatory movements of electricity in each train into a single gush or flow of electricity in one direction, then we
change the trains into short flows of electricity all in one direction, these gushes coming at the spark frequency
viz., \(50-100\) per second. For such intermittent currents the telephone is very
sensitive. Accordingly, it appeared to sensitive. Accordingly, it appeared to
the author in 1904 that if we could find some kind of conductor which would act like a valve for high frequency currents and let currents in one direction pass, but stop currents in the opposite
directions, we should be able to rectify the trains of high frequency oscillations
set up in a receiving aerial and detec direct-current instrument. Meditatin on this problem the author found the solution by making use of an incandescent electric lamp with a plate of metal sealed into the bulb.


\section*{by J. A. Fleming, M.A., D.Sc., F.R.S.}
"The author had carefully studied in 1883 and 1896, as already mentioned in effect" in glow lamps discovered by Edison in 1883, and by 1904, as a consequence of the researches of Sir J. J. Thomson, it was well known that an incandescent filament of carbon in a high vacuum was giving off torrents of
electrons or particles of negative electricity. Also, it had been found by the author that the space in a high vacuum between an incandescent cathode and a
cold anode could conduct negative cold anode could conduct negative
electricity from the hot to the cold elecelectricity from the hot to the cold elec-
trode, but not in the reverse direction. It was not at all obvious, however, that a carbon filament incandescent lamp
with a plate sealed into the bulb could with a plate sealed into the bulb could be used to rectify high-frequency them into continuous or direct currents. Mr Edison had made no such use of his "Edison effect" lamps, nor had it occurred to anyone, until the author pointed cylinder surrounding the filament and carried on a wire sealed through the bulb, could be used to rectify high frequency currents and, therefore, as a detector of electric waves in wireless
telegraphy.
the trains of high frequency oscillations

1904 some carbon filament incan descent lamps in which the filamen warried on a platinum wire sealed through the bulb. These lamps had their filaments made incandescent by a six cell storage battery, and they were con nected...... with the receiving circuit electric waves striking the aerial wire set up in it rapid electric oscillations or electric currents running up and down the wire. These created, by induction,
other electric currents in the condenser other electric currents in the condenser
circuit connected to the aerial wire. To circuit connected to the aerial wire. Tol cylinder of the lamp was joined, and the end of the carbon filament in connection with the negative terminal of the battery of cells was connectedthrougha second terminal of the receiving condenser.
"Hence, as the electric oscillations took place in the condenser, electric telephone and through the vacuous space, but, as already stated, negative electrons are being given out by the hot filament, and, therefore, negative elec-
tricity only can pass from the filament
operates to stop all current flow in on
direction, but permits it in the opposite in other words, it acts like a valve fo itectricity. The author, therefore, called it an oscillation valve and it has
generally been named Fleming valve or thermionic valve. The result is to convert the trains of rapid oscillations produced in the condense the same direction through th telephone. These gushes come at inter vals corresponding to the spark requency, viz., \(50-500\) per second, and, therefore, produce in the telephone a
uniform sound. This is cut up into short uniform sound. This is cut up into short or long periods corresponding to the dot signalling key in the transmitter is manipulated properly.
"It was at once found that this ther mionic valve gave us a very simple waves in radiotelegraphy"
The above was written a good while after the events described, in about the time of making his invention he the time of making his invention he about it and adding, as an afterthought, I have not mentioned this to anyone

\footnotetext{

}

Two-metre s.s.b. and f.m. transceiver - 2

\author{
continued from page 72
}
ompromise to meet all of the requirements.

Receiver converter
In Fig. 9, input from the aerial changeover relay is amplified by the low-noise m.o.s.f.e.t.t.r.f. stages \(\operatorname{Tr}_{44}\) and \(\operatorname{Tr}_{50}\) - the frequency greatly improves the secondchannel rejection. \(\mathrm{L}_{39}\) couples to \(\mathrm{L}_{40}\) at ow impedance and the push-pull out put at high impedance is applied to the gates of the f.e.t. balanced mixers \(\mathrm{Tr}_{5}\) njection at low impedance drives the source of each f.e.t. in parallel. Push pull output circuit \(\mathrm{L}_{41}\) is resonated at the .7MHz i.f. and offers considerable However, the two f.e.t.s can be balanced o give a further 20 dB or so attenuation to the oscillator injection by adjustmen to the balancing pre-set resistor \(\mathrm{R}_{211}\)
Transmitter converter
The 10.7 MHz input at low impedance is applied to the primary of \(\mathrm{L}_{44}\) in Fig. 10 Push-pull output at high impedance

\section*{Microprocessor sales}

Worldwide sales of microprocessors will grow from \(\$ 430\) million (about \(£ 215\) million) compound annual growth rate of \(25 \%\), compound annual growth rate of 25\%,
according to Creative Strategies International (CSI), a California-based market research and consulting firm.
Most of the growth in processor sales will
be in 8 -bit and 16 -bit units, with a \(24 \%\) growth rate in 8 -bit processors and a \(62 \%\) growth rate in 16 -bit processors, compounded annually. over the next five years. Throughout this
five-year period, 16-bit processors will continue to dominate the marketplace with over \(60 \%\) market share. The 16-bit processor will,
according to CSI, increase its market share according to
from \(6 \%\) to \(23 \%\) by 1983 , due primarily to new applications in computer peripherals and
communications. The communications. The growth in the 16 -bit
market share is expected to offset the decline marke thare is expected to offset the decline 4-bit processor will remain flat from 1978 to
1983 but its market share will drop from \(26 \%\) 1983, but its market share will drop from \(26 \%\)
to \(9 \%\). This, says CSI, will be due to the large to \(9 \%\). This, says CSI, will be due to the large
growth of the overall market and the reduc.tion of the average selling price of t-bit units. Like semiconactors, processors will connext five years, predicts CSI. Units currently selling at from \(\$ 2.00\) to \(\$ 15.00\) will drop in price to

\section*{Books Received}

Hi-fi Choice No. 15 is the third collection o loudspeaker reviews in the series, and is
written by Martin Colloms. The books in the :series are consistent in form, being par laboratory reports, part listening tests, and are probably the best source of information
for anyone looking for the most suitable equipment to buy. Loudspeakers are ex tremely difficult to test and describe - one
often has to fall back on ambiguous and often has to fall back on ambiguous and
imprecise expressions such as 'boxy' and 'boomy' - but, even so, the author has explained all this in the introduction,
together with the methods of testing used. together with the methods of testing used. Ifor the second time (reasons given) and the best are given the "recommended" tag. The indicated by the last sentence of the editorial, which says " \(\ldots\) standards and conditions thoroughly misleading to try to compare these results with those quoted by manufacturers, or indeed to try and compare one manufacturer's quoted performance with
another's, or perhaps another reviewer's." another's, or perraps another reviewer's.
Hi-fi Choice circumvents this problem by subjecting all the speakers to the same tests will not be absolute, they at least enable comparison. The book has 200 pages, costs \(£ 2\) and is obtainable from booksellers. It is

Amateur Radio Operating Manual, edited by R. J. Eckersley, G4FTJ, is a completely prac calious kinds of amateur activity It is not various kinds of amateur activity. Itt is not a
technical' book, in that there is little discus ion of equipment, and concentrates o
mixer \(\mathrm{Tr}_{53}\) and \(\mathrm{Tr}_{54}\). Heterodyne frequency injection at low impedance lel. Push-pull output circuit \(\mathrm{L}_{45}\) is resonated at 145 MHz , but can only offer limited attenuation to the strong
heterodyning input which is only 10.7 MHz removed. This difficulty is overcome by adjustment to \(\mathrm{R}_{216}\) to
balance the mixer and by the additional balance the mixer and by the adaitional selectivity of three signal-frequency tuned circuits, \(L_{46}, L_{47}\) al is fanted 2 m band signal is further amplified by a class A m.o.s.f.f.e.t. stage \(\mathrm{Tr}_{55}\). Input to the power amplifier \(\mathrm{Tr}_{56}\) operating in class \(A\) is impedance matched by \(\mathrm{C}_{276}\) and \(\mathrm{C}_{277}\). Forward bias determined by the potential divider \(\mathrm{R}_{222}\) and \(\mathrm{R}_{223}\). Power output across 75 ohms is approximately 100 mW p.e.p.
This unit must be fully screened to mounted on stand-off pillars in a standard aluminium box \(51 / 4 \mathrm{in}\) by \(23 / 4 \mathrm{in}\) by \(11 / 2\) in high.

To be continued
procedures and practices, giving advice on tions and contests. There are sections on DX, with an extensive description of conditions and frequencies, saiel.e working, r.t.t.y. and
slow-scan television. Five appendices pro-slow-scan television. Five appendices pro-
vide maps, international call-signs and world time relative to GMT and departures from. this standard time. The book is published by
the RSGB at \(£ 4.83\) (by post) and contains 192 the RSGB at \(£ 4.8\) (by post) and contains 192
pages. It can beobtained from the RSGB at 35 . Doughty Street, London WCIN 2AE.

The Microprocessors Application Group of the IEE is to hold a colloquium entitled
Teaching and software design techniques for Teaching and software design techniques for microprocessors' on November 1.1 itis hoped
that the meeting will include contributions.
from Dr R. D. Baker of the University of that the meeting will include contributions
from Dr R. D. Baker of the University of
Sussex Dr F. Duncen of the Unis. Sussex, Dr F. Duncan of the University of:
Leeds, Mr B. Cohen of STL, Harlow, and Mr. Leeds, Mr. B. Cohen of STL, Harlow, and Mr.
F. Pettit of the University of Oxford. Anyone wishing to contribute to the colloquium is invited to contact Dr A. C. Davies at the City
University, London, (01-253-4399) or the IEE University, London, (01-253-4399) or the IEE
Secretariat quoting reference LS (GG). Regsecretariat quoung reerene
istration forms available on application to the IEE quoting reference LS (DA).

\section*{SIXTY YEARSAGO}

In a report, published in the November 1919 issue of Wireless World, of a British Association Meeting, a paper entitled "A trigger-
relay utilizing three-electrode thermionic relay utilizing three-electrode thermionic
vacuum tubes" by W. H. Eccles and F. W. Jordan was recorded. This is the famous Eccles-Jordan flip-flop, without which com'"In a well-known method of using a triode; for the amplification of wireless signals an inductive coil is placed in the filament-tocoupled with this is introduced into the filament-to-grid circuit. This "backcoulled, if it is arranged in the right sense, greatly exalts the magnification produced by grea tube in any alternating E.M.F. applied to
the the grid; for the induced E.M.F. passed back to the grid is in correct phase reation to add
directly to the original alternating E.M..
applied there. If instead of using inductive
retroaction of this kind we attempt to use esistance back-couping, then the retroac opposite in phase to the original alternating E.M.F., and the amplifying action of the can produce opposition in phase in the manner indicated it is clear that two or any even, number of similar triode-circuits arranged in
cascade can produce agreement in cascade can produce agreement in phase.
Hence we conclude that retroactive Hence we conclude thifation can be obtained by effecting a ampification can be obting to the first grid from the second, fourth, and so on, anode circuit of a
set of triodes arranged in an ohmically. set of triodes arr
It is possible. to take advantage of the fact
It continuously-acting relay The paper described a one-stroke relay, which, when operated by a small triggering electrical impulse, undergoes great changes
in regard to its electrical equilibrium, and then remains in the new condition until
re-set.'

THE VALVE AND TUBE SPECIALIST


\section*{WHY BUY A MICRO-COMPUTER FROM
 SERVICING LTD.}

\section*{BECAUSE}
1) Established company trading since 1971
2) Electronic servicing is our speciality
2) Electronic servicing is our speciality
3) We have in house programmers/syste
4) We have our own service engineers
8) Weo fofer ater the three month waranty, s sevicie contract tom 9) Vou benefititiom our oxperierace of having sold vover 450 micro-computer
personal users.
personal users.
(0) \(\begin{aligned} & \text { We specialise in programs and interfaces for weighing applica- } \\ & \text { tions for average weight control and counting, etc. }\end{aligned}\).
5) We will demonstrate the PET at your premises

We can customise the \(P\)
\(8 \mathrm{~K} £ 550.00+\) VAT
16 E E675.00 New Large
Kevboard 'PETS
Now in Stock

Also
available:
24K Memory Expansion Boards (disk-compatible), only \(£ 320+\) VAT

elephone for complete system prices: Wide Range of Printers Available
If you require any more information or demonstration regarding the PET 2001/8 or any associated equipment, programs, etc., please
contact Mr. P. J. A. Watts or Mr. D. W. Randall at: PETALECT ELECTRONIC SERVICES LTD

All 'PETS' sold with a Basic Tutorial Tape our showroom we sel
\(33 / 35\) Portugal Road, Woking, Surrey
Tel. Woking \(69032 / 68497\)

ww - 072 FOR FURTHER DETAILS

\section*{Soundfield microphone - 2}

\author{
Detailed functioning of control unit
}
by Ken Farrar, Calrec Audio Ltd

Ambisonics and surround sound technology based on psychoacoustic theory form the nucleus of the design of the soundfield microphone (News, Aug.
1978). The design combines advanced acoustical, mechanical and electrical precision engineering in a new way. Recordings made with the microphone and reproduced through a minimum of loudspeakers produce images which are
stable and uncoloured, while additional loudspeakers, which need not be full range, allow reproduction of valuable height and reverberant information. The soundfield microphone enables the recording engineer not only to record the recording from obsolescence, but to compare and dub to conventional forms adjusting, panning and steering his "microphones" after the event.

THE MICROPHONE INPUTS to the Soundfield control unit are electrically balanced having a common mode ejection to interfering signals bette than \(-60 \mathrm{~dB}, 20 \mathrm{~Hz}\) to 20 kHz . The inpu may be preceeded by a -20 dB attenua tor ( \(\mathrm{A}-20\) ) if the microphone is used in very loud conditions.
Following the AB matrix, the B frmat signals are controlled by a four gang rotary fader and additional gain of
\(+6 \mathrm{~dB},+14 \mathrm{~dB}\) and +30 dB (fader max.) may be added to allow a maximum microphone sensitivity of 68 dB s.p.l. for OdBm levels at the recording outputs. hese amplifiers are designed to w and overloading to +24 dBm . monitored by a peak programme meter which may be switched to \(\mathrm{X}, \mathrm{W}, \mathrm{Y}\), or Z and having facility to increase meter nsitivity by 20 dB
The recording signal and the repla
signal from the four-track tape recorde may be monitored, (thus allowing hecking of recording quality) by hain of amplifiers contained in a serie of modules in the same manner as th The first two mod
monitor) chain are soundfield output nodules. Soundfield-1 provide azimuth and elevation adjustments and soundfield-2 provides dominance to the back. These controls are operative on eplay or dubbing unless the outpts are used for recording
Azimuth control
Consider the horizontal directional nd Y, Fig. 10. Suppose that they ar passed through a circuit such that \(X\) (output) \(=-Y\) and \(Y^{\prime}\) (output) \(=X\)


\footnotetext{
Fig. 9. Modules shown with broken outlines may be omitted with reduced facilities. With all possible
modules left out equipment operates as a "Super Stereo" microphone with steerable facilities. These controls may still be operated post session on B-format material.
}


Similarly if \(X^{\prime}=Y\) and \(Y^{\prime}=-X\) the microphone would behave as if it faced
the \(C_{L}\) direction. \(Y^{\prime}=-Y, X^{\prime}=-X\) the \(\mathrm{C}_{\mathrm{L}}\) direction. \(\mathrm{Y}^{\prime}=-\mathrm{Y}, \mathrm{X}^{\prime}=-X\)
corresponds to the microphone facing \({ }^{\text {corresponds }}{ }^{\mathrm{C}}\) and so forth
If the microphone is required to face, say, \(\mathrm{L}_{\mathrm{F}}\) (Fig. 11) then \(\mathrm{X}^{\prime}\) needs to be composed of components \(X\) and \(Y\) but with the same overall sensitivity as \(X\) (or \(Y\) ). The peak sensitivity of \(X^{\prime}\) (and
\(Y^{\prime}\) )
required to \(\left.Y^{\prime}\right)\) is required to remain constant and
the orthogonal components must satisfy the following sine/cosine relationship
\[
\begin{aligned}
X^{\prime} & =X \cos \theta+Y \sin \theta \\
\text { and } Y^{\prime} & =Y \cos \theta-X \sin \theta
\end{aligned}
\]

In the example given
\[
X^{\prime}=X \cos 45^{\circ}+Y \sin 45^{\circ}
\]
\[
\begin{equation*}
\text { so that } X^{\prime}=\frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}} \tag{7}
\end{equation*}
\]
and similarly \(Y^{\prime}=\frac{Y}{\sqrt{2}}-\frac{X}{\sqrt{2}}\)
A continuously variable azimuth control requires the use of a twin- gang sine/cosine potentiometer in the circuit of Fig. 12.
Elevation control
If rotation of the microphone is required nly over a restricted range of \(\pm 45^{\circ}\) such as the elevation control, a less sophisticated circuit may be used, Fig. and \(Z\) co-ordinates since it is required rotate the microphone forward and backward about the \(Y\)-axis.
The circuit firstly produces sum and difference signals \((X+Z) \sqrt{ } / 2\) sis and \((X-Z) / 2\) corresponding to \(45^{\circ}\) vertical \({ }_{R}\) varies the mix to \(X^{\prime}\) (output) so that at the extreme positions \(45^{\circ} \mathrm{U}\) and \(45^{\circ} \mathrm{D}\) each of the two signals is passed respectively. These corresponde to \(X^{\prime}\) as hown in Fig. 1 the centre, \(0^{\circ}\) osition \(X^{\prime}=X\)
L, \(T\) and \(R\) values are chosen so that modulus of \(X^{\prime}\) remains constant, the components following a sine/cosine law \(s\) with the azimuth contro
Dominance control
effect called dominance. To intros an effect, imagine the incoming sounds as arriving from different points on the surface of a large sphere centred at the

Fig. 10. Principle of azimuth control.


Fig. 11. Azimuth co-ordinate
components. (Right).
Fig. 12. Azimuth circuit.
 Fig. 13. Elevation circuit. Amplifiers
indicated schematically are used in the virtual earth mixing mode.
Fig. 14. Dominance control. Sound directions are mov
around the sphere in the manner illustrated for \(a\) forward or upward dominance angle :Simultaneously microphone sensitivity ( \(W\) and direction of the dominance (front or up in the example) and reduced in the opposite direction ( example

WIRELESS WORLD, NOVEMBER 1979 microphone. The dominance control val of sounds, and also their loudness. In the case of vertical dominance, the control effectively displaces all sound on the sphere upward or downward, also making the microphone more sensitive to sounds in tich the sounds or displaced.
The extent of the displacement is marked on the control as an angle which is the extent by which the placed above (or below) its normal horizontal position, Fig. 15. The control provides nine selected positions, four either side of normal, \({ }^{\circ}\), the maximums being \(\pm 45^{\circ}\) : the control can be used back (horizontal) dominance.
Increasing dominance in the circuit progressively changes the pressure
(omni-directional) component W into a (omni-directional) component \(W\) into a amount of corresponding pressuregradient component. That is Z for up, -Z for down, X for front and -X for back. At \(45^{\circ}, \mathrm{W}\) is still not quite a
cardioid. Simultaneously Z (for up/ down) or X (for front/back) has an increasing component of W added to it or subtracted from it to convert Z or X from figure-of-eight to hyper-cardioid. he condition for \(+30^{\circ}\) up. 16 show he condition for \(+30^{\circ}\) up
vided in each case such that the ratio of the energy in the velocity signals to the energy in the pressure signal remains unchanged although a use of the contions and/or de-emphasize others so change in programme level is usually heard. For example a typical use is to set for UP dominance so as to reduce the audience noise. Alternatively the microphone may be apparently moved closer to the sound stage by the use of front dominance. What in fact happens is that the sensitivity to front or direct or reverberant sound is reduced The circuit to achieve this is shown schematically in Fig. 17
Output controls
Following the soundfield controls, the -format signals may be passed via the gain control to the output sockets if "B"
output is selected, at 0 dBm level. This condition would be used for dubbing using the soundfield controls to mak adjustments or during recording if it was felt necessary
this condition.
A more likely arrangement is to select Ambisonic decode and use the output ockets for four-loudspeaker monioring thus recording the B -format ignals from the microphone directly soundfield and other controls in the monitor chain during the recording.
When Ambisonic decode is selected When Ambisonic decode is selected, he-format signals are passed from the


Table 1: Effective matrix equations for
rbizonic E-format decoder with sauare
\begin{tabular}{|c|c|}
\hline Low frequencies & Mid and high froquencies \\
\hline \(L_{B}=W-X+Y\) & \(L_{B}=W-\frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}\) \\
\hline \(L_{F}=W+X+Y\) & \[
L_{\mathrm{F}}=\omega+\frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}
\] \\
\hline \(R_{F}=W+X-Y\) & \[
R_{F}=w+\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}
\] \\
\hline \(R_{B}=W-x-Y\) & \[
\mathrm{R}_{\mathrm{B}}=w-\frac{\mathrm{x}}{\sqrt{2}}+\frac{\gamma}{\sqrt{ } 2}
\] \\
\hline
\end{tabular}
gain control into shelf filters in the output module. The shelf filters are shifts of \(90^{\circ}\) at 400 Hz . The effect of the shelf filters is to boost the gain of W relative to that of X or Y by 3 dB at high frequencies. The subsequent loudspeaker matrices thus produce \(120^{\circ}\) hyper-cardioids at low frequencies at
the four corner positions and \(135^{\circ}\) hyper-cardioids above about 1 kHz . This produces optimum psychoacoustic performance in accordance with th theory of references \(1,4,7\) to 10 . be placed in a regular format, a loud speaker layout control shown in Fig. 18: allows variation of the \(X: Y\) aspect ratio from 1.2 to 2.1 to compensate. Fixed
distance compensation in the form of RC high-pass filters of pressure gradient compenents X and Y is provided for typical monitor loudspeaker distances of 2 to 3 metres from the listeners to compensate the increase in velocity components at very low frequencie due to sound wavefront curvature. low frequencies and at mid-band and above for a square loudspeaker layout are given in Table 1 .
If the outputs are selected to quadruple or stereo/mono the shelf filters
and loudspeaker layout control are bypassed and the output matrix is set for corner cardioids i.e.,
\[
\begin{aligned}
& L_{\mathrm{B}}=W-\frac{X}{2}+\frac{Y}{2} \\
& L_{\mathrm{F}}=W+\frac{X}{2}+\frac{Y}{2} \\
& R_{\mathrm{F}}=W+\frac{X}{2}+\frac{Y}{2} \\
& R_{\mathrm{B}}=W-\frac{X}{2}+\frac{Y}{2}
\end{aligned}
\]

On stereo/mono and \(L_{B}\) and \(R_{B}\) are switched off.
The controls of polar pattern and angle are now operative and work as follows. At \(0^{\circ}\) angle \(Y\) is reduced to zero and Xenhanced 3dB to maintain proper


Fig. 18. Circuit of output module showing shelf filters, low frequency layout control which follows a sine / cosine gain law and loudspeaker matrix.
nd \(Y\) increased 3 dB . The control fol ows a sine/cosine law similar to th levation and layout controls, Fig. 1 he polar pattern control provides unity gain to \(X, Y\) and \(W\) at the cardioid and X and Y turned off. Similarly, a figure-of-eight X and Y are increased dB and \(W\) turned off. Intermediate settings provide continuously adjust-hyper-cardioids. Typical micro
e set up as follows. This corresponds to mono and the syn hesized single micropho and the syn for any pattern from omni-directiona through cardioid to figure-of-eight. It can of course be panned and tilted as reviously described, using the sound eld 1 controls, Fig. 20(a).


Fig. 19. Microphone angle and polar pattern circuit.

This corresponds to a truly coincident stereo pair whose patterns may be varied as above, set in the familiar \(45^{\circ} / 45^{\circ}\) configuration. They may as a required, Fig. 20(b).
Variation of the angle control now adjusts the angle between the pair of microphones which can be as much as
polar pattern control, azimuth and elevation gives infinite stereo flexibility,

With the output set to quadruple, four such microphones may be synthesized Fig. 21, This configuration may be changed as shown
angle between the front and rear pairs of "microphones" simultaneously. All polar patterns may be varied together and identically, The whole fore. signals may be monitored continuously using stereo headphones irrespective of the output mode selected. Thus what is
heard in the headphones is subject to the angle and polar patterns controls all the time. These controls may be set for a particular output condition and in this event, there is a separate headphones
stereo width control which may be set stereo width control which may be set
down to mono if required. The headphones employ a unique circuit with a phase advance applied to the \(Y\) signal (this is equivalent to \(S(=L-R\) ) in, natural, sharper stereo present a

WIRELESS WORLD, NOVEMBER 1979

\section*{Conclusions}
master recordindield microphone and master recording of the four B-format for a new and versatile standard but is necessary to consider the inclusion of pan-potted material. In some situations emphasis needs to be given to an individual or section. Single microphones B-format presentation using special, but fairly simple, circuit techniques although it should be stressed that such used with discretion so as not to confuse and distort the "acoustic hologram" of the soundfield microphone.
It is necessary to have encoding standards for public use which preserve as far as possible the qualities of the and stereo compatibility and, because of the existing commercial outlets, include the possibility of encoding the surround sound effect into just two audio channels. Whatever system is
chosen should, however, be adaptable to three of four-track systems in such a way that additional features such as height may be included.
The term for a system of this type is are a number of proposals in existence,
\[
\longrightarrow
\]
the Ambisonic proposal being System channel is HJ (or BHJ) This matrix specification is the now-accepted twochannel standard superceding the earlier NRDC system 45J and BBC System H.

In system THJ a third channel (T) which can be band limited may be added when the third channel is band-limited the system is termed a \(2^{1 / 2}\)-channel sysAuthority is undertaking experimental \(2^{1} / 2\)-channel HJ broadcasts. When available a fourth channel may be used for either to emphasize loudspeaker positions in a square layout; QHJ, or to present a full soundneld with-height directional ects, HH
kernel not matrix specifications and as such may be applied to multi-track as well as B-format or other four-track recorded materia. See references for further details

\section*{Acknowledgements}

The tetrahedral array of capsules is based on an application of the matheface of a sphere developed by Michael
\[
\square
\]

(a)

(b)

Fig. 20. Two polar patterns (a) above, and two stereo configurations (b), below. Synthesized cardioid microphones are shown left and a stereo pair of synthesized microphones set hypercardioids at an
downward seen from direction \(C_{F}\) are shown right.


Fig. 21. Typical quadruple configuration.

Gerzon at the Mathe 103 Oxford who devinematical Institute of esign architecture described. Ambi sonics technology was developed by Professor Peter Fellgett of the University of Reading, John Wright of IMF Electronics and Michael Gerzon of the Mathematical Institute of Oxford under Development Corporation. Thanks to Geoffrey Barton of the University of Reading for invaluable design assistnce, notably his computer simulations resulting design of spaced-to-coincident conversion filters. I am indebted to co-director Clem Beaumont without whose devoted expertise in the producion of superb capacitor capsules and project would not have been possible. The Calrec Soundfield microphone and NRDC Ambisonic technology are the subject of the United Kingdom 3997725 and 4042779 together with all corresponding patents in other countries and all other patents pending.

\section*{References}
1. Gerzon, M. A., Surround-sound psycho1. Gerzon, M. A.. Surround-sound psycho-
acoustics, Wireless World, 1974 vol. 80, p. 483 .66.
2. Fellge 2. Fellgett, P. B., Perspectives for
urround-sound Hi-Fi surround-sound, Hi-Fi Sound Annual, 1974 .
3. Fett, P. B., Ambisonics - part ond eneral system description. Studio Sound ugust 1975.
4. Gerzon, M. A., Ambisonics - part two. studio techniques, Studio Sound, August 1975, pp. 24, 26, 28, 30. Corrections Octob 5. Gerzon, M. A., Periphony: with height sound reproduction, J. Audio Eng, Soc, vol 6. Gerzon, M. A., Criteria for evaluatin surround sound systems, J. Audio Eng. Soc. vol. 25, 1977, pp. 400-8.
L. Gerzon, M. A., NRDC Surround-sound
system, Wireless World, April 1977, vol. 83 , system,
S. Gerzon, M. A., Design of ambisonic AES New York (reprint) November 1977. 9. Gerzon, M. A., Multi system ambison ecoder, Wireless Wordd July 1978, vol. 10.' Gerzon, M. A., Optimum choice surround-sound encoding specification, 50 th ES convention Paris, March 1977. 4,042,779, 16 A August 1977 .
12. NRDC. Encoding standards for NRDC Universal HJ Surround Sound Encodin
System.
13. Gerzon, M. A., Design of precisely coincident microphone arrays for stereo and surround sound, 50th AES convention, Lon-
don, March 1975.

The Audio Engineering Society is calling fo The Audio Engineering Society is caling for tion to be held in the London Hilton from February 25 to 27,1980 . Contact Dr J. M Physics Department, University of Surrey Physics Departm
Guildford, Surrey



\section*{Che sera, sera}

What I can't fathom is this passion for wanting to see into the future. Only a few months ago (I was going to say 'a
few short months' but, apart from it few short months' but, apart from it ong ones for Socialists) everyone was going mad trying to forecast the result of the election - a process which, for wo reasons, I deeply deprecate. Firstly, slightly less stupid than pole squatting if everyone would just wait until the votes were counted, they would know the result. Secondly, while pole squatting is not a very productive way of actually do any harm: election forecasting I'm not so sure about. I have a eeling that press and broadcast omment on elections is a process in which Heisenberg (The Uncertain) can't examine something like public opinion, broadcast the result and not affect the opinion you were examining. You have therefore influenced the elecweren't publicly branded a 'wasted' ote, we could have the Member for Roxburgh, Selkirk and Peebles in No. 10 oday, elected on his politics, not his hances of election.
But I digress. I was really wanting to and prolific body of economic gurus called marketing consultants, among ther things. Barely a week goes by expensive compilation of statistics and pedictions on the history and future of companies and products, which is mmediately seized upon by commenine treatment.
I don't think it can help but affect the prospects of a product. There must be, n effect, a positive feedback process rought into play: if companies are told disappear in a year's time are going to going to lose much time in switching to different product, the report having made its own prediction come true. This is not prediction, it is cona researcher came up with the notion that the economy was all set for a \(10 \%\) growth next year and that we were due or a four-dollar pound and an export surplus of something like the Japanese im and the feedback loop wouldn't operate.

\section*{Gossip from the train}

In keeping with my policy of disseminating the latest information from he 17.33 to Epsom, I thought I'd bring hi-fi scene.
There I evening paper, when the chap next to

me pulls out an audio magazine and starts looking at the ads. Well, I don't mind admitting that at that point, I averted my eyes, because quite honestly it had been one of those days and 1 things. It wasn't to be though. A man on the other side of my golden-eared neighbour was evidently a hi-fi nu enthusiast and was intent on bending his ear about loudspeaker cables. The speaker and was informed that if he didn't get hold of a set of special, highdefinition, low-distortion, gold-plated, blue-and-white striped cables, he would need much more sensitive speakers, so encouragement, a 50 W speaker, he was told, would sound more like a 75 W one if he used high-gain loudspeaker wires. At this, I caught my breath. Also, my pulse raced. If only I knew anything
about shop-keeping, I said to myself, I could be worth millions in a couple of years with customers like these. The shop could be stocked with enormous teak and chrome boxes with a couple of i.cs setting products like high-resistance aerial co-ax to stop the Yagi vibrating. in the wind and modulating the signal, and black paint for the inside of speaker enclosures to eliminate reflections. An cator to show when it was working would surely be well received, enabling those vital, ultrasonic musical components to contribute fully to the subjective experience, or something But really, it all comes back to some-
thing I was saying some time ago. In an age when the products people buy are far outside the understanding of untrained people, there ought to be some way of restraining manufacturers from
selling them things they don't need. It isn't that people are gullible - they simply don't know about technical things, and have a right to expect that they won't be conned by makers of expensive equipment who keep on up-
ping the technicalities beyond all reason. Fine for the buffs, who know whether they need it or not, or think
they do, but the average listener to music who just wants something better than a trall this technology is needed or not.

\section*{Number \(1 .\).}

\section*{Hands off cassettes!}

I've just been sitting here, wondering whether to become one of the criminal classes. Nothing as dire as g.b.h. or grand larceny, you understand, but just a little quiet tape-recording. That cassette deck I was wanting - I went out
and bought it before guilt set in and a new dining table took precedence. So there I was, all set up to start a collection of Vivalai, Mozas and Lous Armstrong wher
the euphoria. Not that The Observer is directly to blame - it was simply doing its job of reporting earthquakes, revolutions, air crashes and statements from the British Phonographic Industry
are to lobby the D.o.T. for a levy on blank tape cassettes and recorders, with a view to compensating the record makers for the money they claim to lose in record sales because of the activities of people like me. Now I've got my
cassette deck, I must admit that they can go ahead and impose a levy on decks for all I care, but to attempt to dip their hands into my pocket when I want some cassettes
exception to. exception to.
How does
ette is to be used fnow what a cassinforms me that, since 50 million cassettes are sold each year, the recording industry is consequently losing \(£ 150\)
million a year in sales. It is not possible to check that figure, and it must be assumed to be a guess, possibly inflated to dramatise the situation. It seems that, since the Mechanical Copyright Pro-
tection Society introduced the licence for copying records five or six years ago, only 10,000 have been sold. This does seem to indicate that one or two tape recorder owners may have forgotten to pay the licence fee, but to assume that (BPI's figure) are depriving the record makers of their bread and butter is hardly justifiable on the available facts. What about all the cassettes used in offices, in industry and for capturing the
sound of the lesser, speckled lettucecruncher smacking its lips? It would be just as reasonable, and stand just about as much chance of being accepted, to ask for a levy on reams of blank paper, on the grounds that millions of photo-
copies of newspaper and magazine copies of newspaper and magazine
pages are driving publishers to turn to busking for a living.
If the industry wants to stop people copying records, perhaps they should
make recorded cassettes available at a make recorded cassettes available at a quality and consistency than at present provided.


AMPEX ATR-700 Noow ever studio can aftior legen.
darl
amp
and





Ceramic Capacitors \(£ \mathbf{3 . 5 0}\) per 100
Cable Sleeves and Markers from \(\mathbf{£ 1 . 0 0}\) per 1,000 Compression Terminals from \(£ 7.29\) per 1,000 Pcb self-fixing Guides from \(£ 4.86\) per 100
Elma Knobs and Accessories

Phone, write or call for catalogue
Carbon Film Resistors from \(\mathbf{£ 4 . 0 0}\) per 1,000
Polystyrene Capacitors from \(\mathbf{£ 1 . 5 0}\) per 100 Polystyrene Capacitors from \(\mathbf{£ 1 . 5 0}\) per 100 Send for lists of values available
PBRA LTD. Hoffiold
Golden Green Tonbridge, Kent TN11 345
ww - 028 FOR FURTHER DETALLS

\section*{RECHARGEABLE BATTERIES}

TRADE ENQUIRIES WELCOME
Full range available to replace 1.5 voit dry cellis and 9 volt PP type
batteries, SAE for lists and prices. \(£ 1.25\) for booklet. "Nickel batteries, SAE for lists and price
Cadium Power," plus catalogue.

Write or call at:
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands \(021-354\) 976 See full range at TLC, 32 Craven street, Charing Cross, Londoñ

FREQUENCY COUNTERS - OSCILLOSCOPES - OFF-AIR RECEIVERS


MODEL
S1500
\(15 M H z\)
Dual Trace
\(£ 280\)

A professional standard model dual trace DC to 15 MHz . Usable to 25 MHz
with haternate, chop and single-chanel A or B amplifier selection, \(5 \mathrm{mv} / \mathrm{cm}\),
accuracy \(3 \%\). Excellent triggering wide range time base.

W - OA1 FOR FURTHER DETAIIS

WIRELESS WORLD, NOVEMBER 197


\section*{©wew Low pricts - all ex-stock \\ REAL-STATE-OF-THE-ART}

TWO NEW AC/DC/BATTERY PORTABLE
\[
\begin{aligned}
& \text { FREQUENCY COUNTERS } \\
& \text { FROM OPTOELECTRONICS USA }
\end{aligned}
\]
Moces 8000.1 A
8 DIG

\[
\mathrm{O}_{\text {(was } \mathrm{O} \text { P351) }}
\]
Complete with built-in
NiCads \& charging circuits.

 ( \(£ 120+£ 3 p \& p+\) VAT \(£ 18.45\) )

Complete with built-in


NiCads, charging circuits \& rear panel switch for 1 H resolution.

Maveman


\section*{ELENCO PRECISION DMM \\ ONLY E66.70 inc \\ 1200 B}

The most versatile DMM
we have ever offered at lowest ever price!


\(=\mathrm{man}=\mathrm{m}\)
elenco variable voltage power supplies



We are the sole UK distributors for OPTO
Electronics Inc. and Elesico precision
ME Maclin-Zand Electronics Ltd. \({ }_{3}\) Mount Pleasant, London WC1 XOA 38 Mount Pleasant, London
Tel.01-8371165
Telex: 8953084 MACLIN G w - 104 FOR FURTHER DETALLS

\title{
Simply ahead. .
}

\section*{ILP'S NEW GENERATION OF HIGH}


\section*{and staying there}

\section*{PERFORMANCE MODULAR UNITS}
THE POWER AMPLIFIERS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model & Output Power R.M.S. & \begin{tabular}{l}
Dis- \\
tortion \\
Typical
at 1 KHz \\
ar
\end{tabular} & Minimum Signal/ Noise Ratio & Power Supply Voltage & \[
\begin{aligned}
& \text { Size } \\
& \text { in } \mathrm{mm}
\end{aligned}
\] & Weight
in gms & Price + V.A.t. \\
\hline HY30 & \[
\begin{array}{|l|}
\hline 15 \mathrm{~W} \\
\text { into } 8 \Omega \\
\hline
\end{array}
\] & 0.02\% & 80dB & -20-0- +20 & \(105 \times 50 \times 25\) & 155 & \[
\begin{array}{r}
\mathbf{£ 6 . 3 4} \\
+95 p
\end{array}
\] \\
\hline HY50 & 30 W & 0.02\% & 90dB & -25-0-+25 & \(105 \times 50 \times 25\) & 155 & \[
\begin{aligned}
& £ 7.24 \\
& +£ 1.00
\end{aligned}
\] \\
\hline HY120 & 60 w into \(8 \Omega\) & 0.01\% & 100dB & -35-0- +35 & 114×50×85 & 575 & \[
\begin{aligned}
& \text { £15.20 } \\
& +£ 2.28
\end{aligned}
\] \\
\hline HY200 & \[
\begin{array}{|l|}
\hline 120 \mathrm{~W} \\
\text { into } 8 \Omega \\
\hline
\end{array}
\] & 0.01\% & 100dB & -45-0-+45 & \(114 \times 50 \times 85\) & 575 & \[
\begin{aligned}
& \hline £ 18.44 \\
& +£ 2.77 \\
& \hline
\end{aligned}
\] \\
\hline HY400 & \[
\begin{aligned}
& 240 \mathrm{~W} \\
& \text { into } 4 \Omega
\end{aligned}
\] & 0.01\% & 100dB & -45-0.+45 & 114×100×85 & 1.15 Kg & \[
\begin{aligned}
& £ 27.68 \\
& +£ 4.15
\end{aligned}
\] \\
\hline
\end{tabular}
Load impedance - all models \(4-16 \Omega\)
Input sensitivity - all models 500 mV
input impedance - all models \(1000 \mathrm{~K} \Omega\)
input impedance - all models \(100 \mathrm{~K} \Omega\)
Frequency response -all models \(10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}\)

ww - 015 FOR FURTHER DETALS

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to this page. You may also apply
the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS


The FM/AM 1000s with Spectrum Analyser
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor


FieldTech Ltd. Heathrow Airport Londo Hounslow
TW6 3AF Tel: 01-759 281 Telex: 23734
FLDTEC G
Testing.. Testing.. Testing..


\section*{anywhere}


OEM — let Drake Transformers advise you on a component specification and design to solve that special problem. Pre production prototypes and development undertaken as necessary.
Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manutacture of transtormers and large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED South Green Works Kennel Lane Billericay Essex CM11 2SP
Telephone: Billericay (02774)51155 Telex: 99426 (prefix Drake)

Postage will


Wireless World Subscription Order Form Wireless World, November 1979 ww 971
UK subscription rates
1 year: \(£ 9.00\)
USA \& Canada subscription rates 1 year: \(\$ 31.00\)
Overseas 1 year: \(£ 12.00\)
Please enter my subscription to Wireless World for 1 year
I enclose remittance value.


Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget - Telephone: 225008 Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6 , 20154 Milan - Telephone 347051 Telex : 37342 Kompass

Japan Mr. Inatsuki, Trade Media-IBPA (Japan), B212 Azabu Heights, 1-5-10 Roppongi, Minato-Ku, Tokyo 106 Telephone : (03) \(585_{\mathrm{F}} \mathbf{0 5 8 1}\)

United States of America Ray Barnes, *IPC Business Press 205 East 42nd Street, New York, NY 10017 -Teleptrone
(212) 6895961 -Teleex: 421710 Mr. Jack Farley Jnr., The Farley Co Mr. Jack Farley Jr., Wacker Drive,
Suite 1548,35 East Wal Chicago, Illinois 60601 - Telephone: (312) 63074

Mr. Victor A Jauch,
Elmatex Internationa
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A. Telephone: (213) 8218581
Telex: 18-1059 Telex: 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605 ,
Ranna Building, Cleveland, Ohio Ranna Building, Cleveland, Ohio 4415 -
Telephone: (216) 6211919
P.O. Box 2008, Miami Beach, Florida

33140 -Telephone : (305) 5327301 Mr. Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone: ( 404 ) 2377432 Mike Loughlin, IPC Business Press, 15055 Memorials, Ste 119, Houston, Tex
\(77079-\) Telephone: ( 713 ) 7838673

Canada Mr. Colin H. MacCulloch International Advertising Consultants Ltd. 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269

\section*{Why Scopex?}


\section*{Theres a range of answers.}

There's something every one of our scopes has in commone Great accuracy, tremendous reliability and

Take the new 4D-10B. The fully stabilised powe supply gives \(3 \%\) accuracy. There's a XY facility using CMOS ICs for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full
bandwidth over the full screen area, trace locate and TV field trigger. At \(£ 210.00^{*}\) it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz Or the 4D-25. A dual trace model with DC-25MHz
bandwidth and \(10 \mathrm{mV} / \mathrm{cm}\) sensitivity. Signal delay bandwidth and \(10 \mathrm{mV} / \mathrm{cm}\) sensitivity. Signal delay
allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3\% accuracy and still only \(£ 360.00^{*}\).

Plus the 4 S 6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to \(100 \mathrm{~ms} / \mathrm{cm}\). Lightweight, compact and
a very good price. \(£ 144.00^{*}\).

Return the coupon for full details of the range that gives you a lot more scope.
UU list price excluding VAT.



\section*{J. L. Linsley-Hood High Quality Cassette Recorders}

LINSLEY-HOOD CASSETTE RECORDER 1









LENCO CASSETTE MECHANISMS
We hold stocks of range of Lenco tape transporss for all uses, we

CASSETTE HEADS



 cull deatiliso of these and and oher husads are in our ists.

HART ELECTRONICS

LINSLEY HOOD CASSETTE RECORDER 2






 quaity ot the components sed makes. this new kit comporabile with built-up units
much higher cost t than the modest \(£ 94.90+\) VAT we ask tor the completer kit.

SUPER BARGAIN OFFER


CASSETTES
Uspent is. Wow tand on thecorders made us realise how important the choice of




C10 35 Complete in library case. Suitable for Mirro Programming.
BAILEY 30 WATT AMPLIFIER


Penylan Mill, Oswestry, Salop Personal callers are always welcome
but please note we are closed all day Saturday

Instant easy ordering, telephone your requirements and credit card number to us on Oswestry (0691) 2894




\footnotetext{

}
 SPECIAL PRICES FOR COMPLETE KITS T20+20 Kit price \(£ \mathbf{~} \mathbf{3} \mathbf{3 . 1 0} \mathbf{+}\) VAT T30+30 кіT PRICE \(£ \mathbf{3 8 . 4 0}+\) VAT AVÁlABLE AS SGFARATE PACKS - PRICES IN OUR FREE CATALOGU POWERTRAN SFMT TUNER


PRICE FOR COMPLETE KIT \(£ \mathbf{3 5 . 9 0}\) + VAT avallable as complete kit
\(\qquad\)


Another superb design by synthesizer expert Tim Orri

TiANSGEMD EMT
As featured in Electro
October, 1979 issues
DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER



COMPLETE KIT ONLY \(£ 365.00\) + VAT!



EXPORT A SPECIALITY!


Value Added Tax not included in prices UK Carriage FREE


 sEc U.
ode \(£ .50\) NAT inclusive) per kit.

 FOR FURTHER INFORMATION PLEASE WRITEO for further information please write or

\section*{POWERTRAN ELECTRONICS}


All your microcomputer requirements can b
bought with confidence by mail order from MICRODIGITAL, one of the largest and longest established computer stores
ceipt, if not a note explaining what the supply situation is. If we cannot supply within 30 days we will, on request, make an immediate cash refund. either in writing or over the phone. Your account will not be charged until the goods are despatched Official orders of over \(£ 10\) are also welcome. fide commercial and government organisations. fide if you do not have our brochures, write or phone today for free copies by return.

\section*{R \\ MICRODIGITAL}



\section*{REFIDTHENIEWNEWS BEFOREIT BECOMESOLDIEWS}

Company news changes fast in the electronics industry-but it can't outpace Electronics Weekly Mergers, new projects, major policy changes, the scene is covered week by week; and interviews with leading industrialists provide insights into the way the top companies are developing their business.
You couldn't have a more valuable briefing on the company situation-but its value obviously depreciates if you receive Electronics Weekly late, and are the last to know about developments that may ally affect your business and your customers.
For only 10 p a week you could see Electronic Weekly ahead of everyone. Fill in and post this coupon... and news about your industry will alwa be new!


Electronics Weekly

WIRELESS WORLD. NOVEMBER 1979
U.K. RETURN OF POST MAIL ORDER SERVICEE, ALSO WORLDWIDE EXPORT SERVICE'

\section*{ELECTRO-TECH COMPONENTS LTD.}


RADIO COMPONENT SPECIALISTS \({ }^{333}\) whitr

122

WIRELESS WORLD, NOVEMBER 1979
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} &  & \begin{tabular}{l}
DC POWER SUPPLIES \\
APT 10459/8 12-14V. 5 Amps. £25. (+£1 pp)
\end{tabular} \\
\hline & \multirow[t]{2}{*}{} & Pp). 10459/8. 24V. 5 Amps. \(\mathbf{\varepsilon 2 5 .}\). ( + E1 po). - APT Your voltage requirements from 6 V to - 36 V @ 5 Amps. \(\mathbf{E 2 5}\). ( \(+£ 1\) pp). Muliard Dual supplies. Brand new with handDims \(9 \times 4 \times 5 \mathrm{in}\). \(£ 10\). \((+\varepsilon 1 \mathrm{pp})\). \\
\hline \multirow[t]{6}{*}{} & &  \\
\hline & \multirow[t]{5}{*}{AIRMEC Display oscilloscope. 4 beam AIRMEC 314 A Voltmeter. 300 mV (FSD)-300V BRANDENBURG EHT Generator. 50 KV . 1 mA . DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc. GAUMONT KALEE Flutter Meter GERTSCH Frequency Meter and Dev Meter. \(20-1000 \mathrm{MHz}\) E350. EWIETT PACKARD 302A Wave Analyser} & \multirow[t]{5}{*}{\begin{tabular}{l}
Ppl. \({ }^{\text {FARNELL }}\) Current limited. Dimensions \(7 \times 5 \times\) ini. Following range available.
5 Volts \(@ 3\) Amps. \(13-17\) Volts \(@ 2\) \\
5 Volts @ 3 Amps. \(13-17 \mathrm{~V}\) Volts @ 2 Amps.
30 Volts @ 1 Amp. Price only \(£ 15\). \\
30 Volts @ 1 Amp. Price only \(£ 15\). ( \(+£ 1 \mathrm{pp}\) ).
All the above power supply units are 230 V . AC \\
All the above power supply units are 230 V . AC and regulated and fused. All are fully tested before despatch and guaranteed in first class order throughour. As with all our equipmient.
there is a money back guarantee. hero is amoney bak granto.
\end{tabular}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline \multirow[t]{5}{*}{BECKMAN TURNS COUNTER DIALS Miniature type ( 22 mm diam.). Counting up to 15 turn. "Helipots." Brand new with mounting instructions. Only £2.50 each. Level Meter \(0.2-1600 \mathrm{KHz}\) Level Oscillator \(0.2-1600 \mathrm{KHz}\) Level Transmitter \(0.3-1350 \mathrm{KHz}\) Carrier Frequency Level Meter} & \multirow[t]{5}{*}{\begin{tabular}{l}
RACAL type 801 R . 100 mHz Digital Frequency Counter TELETYPE KSR. One remaining. \\
SOLARTRON LM 1420.2 . DVM: 6 ranges to 1 KV . MUIRHEAD type K-1 34-A Wave Analyser. Portable. RADIOMETER AFM \(/ 1\). Dev/Mod Meter. 3.5-320MHz. £185. TAYLOR Model 62A AM/FM Signal Generators. £85. WEINSHEL Power supply Modulator type MO3.
\end{tabular}} & \multirow[t]{3}{*}{} \\
\hline & & \\
\hline & & \\
\hline & & \multirow[b]{6}{*}{\begin{tabular}{l}
'CENTAUR' INSTRUMENT COOLING FANS \\
Made by Rotron Holland. These are very high quality, quiet running fans, specially designed for the cooling of all types of electronic equip-
ment. Measures \(4.5 \times 4.5 \times 1.5 \mathrm{in}\). 115 VAC . 11 Watts. The list price of these is over \(£ 10\) each. Also 230 V . AC available. 15 V . £4.50. (postage 25p). 230V £5.
\end{tabular}} \\
\hline & & \\
\hline \multirow[t]{3}{*}{ADVANCE CONSTANT VOLTAGE TRANSFORMERS Input 190-260V AC. Output constant 220 Volts. 250W. £25. (£2 carriage)} & \multirow[t]{2}{*}{BRUEL \& KJOER type 1504 Deviation Bridge L BRUEL \& KJOER Frequency analyser 2105 BRUEL \& KJOER Microphone amplifier 2603 £ 195.} & \\
\hline & & \\
\hline & & \\
\hline \begin{tabular}{l}
PYE RESISTANCE BOXES \\
5 decade resistance boxes measuring from \\
11.11 .1 ohm to 0.001 ohm
\end{tabular} & Ektronx 55 Oscilloscope TEKTRONIX 545 main frames. \(£ 210\). Choice of plug-in. units extra & \\
\hline LABORATORY OVENS. - Gallenkamp, 3 c f.. . 145 . Also Morgan Grundy 1 cu. ft.
20-WAY JACK SOCKET STRIPs. type with two normally closed contacts. \(£ 2.50\) each ( \(+25 \mathrm{ppp)}\). Type 316 three pole plugs for
above -20 p ea. (pp free). &  & Finger guards for above - 50p each. Also small type Papst fans as above measuring (PP 25p). RS price for all these fans are now around \(£ 12.50\) each!! \\
\hline
\end{tabular}

Z \& I AERO SERVICES LTD
Head Office: 44a WESTBOURNE GROVE, LONDON W'2 5SF
Tel. 7275641 Telex 261306
PRICE, complete with steel carrying case, test lead, battery
TYPE U4341
TYPE U4323
COMBINED WITH SPOT FREQUENCY OSCILLATOR

\(\qquad\) and instruction manual \(£ 9.50\)
Packing and Postage \(£ 1.50\)

Packing and postage \(£ 1.00\)

WIRELESS WORLD, NOVEMBER 1979


SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS
PSI Comp 80 Z80. Based powerful scientific computer Design as published in Wireless World, April-September, 1979

The kit for this outstandingly practical design by John Adams being published in a series of aricless in Wirelass World really is complete!

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PSI COMP 80 Memory Expansion System} \\
\hline Expansion up to By carefully thou \({ }_{3}\) OWK power supp cabinet. Connec
socket is made &  \\
\hline Other Boord: & \begin{tabular}{l}
Fibre glass double sided plated through hole P.C.B. \\

\end{tabular} \\
\hline RAMboerd & \begin{tabular}{l}
Fibre glass double sided plated through hole P.C.B.
\(£ 12.50\) \\
of components including iC sockets, plug and \\
socket but excluding RAMs . . . . . . . . . . 11.20
2114L RAM (16 required) \\
Complete set of board, components, 16 RAMS
\end{tabular} \\
\hline \({ }_{\text {Rom moerd }}^{\text {8K }}\) &  \\
\hline
\end{tabular}

Value Added Tax not included in prices

 U.K. OREDRE. Subiect to \(15 \%\) surchrag for VAT: NO charge is made for
Cariige. Or current rate it changed.


Expansion up to 32 K all inside the computer's own cabinet!
 and son in


\section*{}


\section*{UK Carriage FREE}

POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE PORTWAY INDUSTRIAL ESTAT
ANDOVER HANTS SP10 3NN




\(x\)

\section*{NRDC-AMBISONIC UHJ}

\section*{\(\therefore\) -}

SURROUND SOUND DECODER

by the Ambisonis ceam. W.W. July, Aug. '77.
The unit is designed to decode not only UrHJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ 10 inpuit selections. selections
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6
output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc. Complete kit, including licence fee \(£ 49.50\) + VAT
or ready built and tested \(£ 67.50\) + VAT

\section*{NEW S5050A STEREO AMP}

50 watts rms-channel. \(0.015 \% \mathrm{THD} . \mathrm{S} / \mathrm{N} 90 \mathrm{~dB}\), Mags \(/ \mathrm{n} 80 \mathrm{~dB}\).
Output device rating 360 per channel
Tone cancel switch. 2 tape monitor switches. Metal case-comprehensive heatsinks Complete kit only £63.90 + VAT.

INTRUDER 1 Mk. 2 RADAR ALARM With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along
The The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along
with inroved performance. The kit is even easier to buidd. The interal audible elarm turns off after approximately 40 seconds and
the unit re-arms. 24 V ac mains or 12 V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. the unit re-arms. 240 V ac main
Complete kit \(£ 49.50\) plus VAT.

\section*{Wireless World Dolby noise reducer}


featuring
- switching for both encoding (low-level h.f. compression) and decoding
a switchable f.m. siereo multiplex and bias filter.
provsionsion for decoding Dolby \(f . m\). radio transmissions (as in USA).
no equipment
no equipment needed for alignment.
s suitability for both open-reel and cassette tape machines.
suitability for both open-reel and cassette tape machines.
check tape switch for encoded monitoring in three-head machines.
Also available ready built and tested
Cal

Typical performance
Noise reduction better than 9 dB weigh

Harmonic cistortion 0.1\% at Dolby level typically:
\(0.05 \%\) over most of band, rising to a maximum of
\(0.12 \%\).

Dynamic Range \(>90 \mathrm{db}\)
30 mV sensitivity. Complete Kit PRICE: \(£ 43.90\) + VAT: Calibration Single channel plug-in Dolby (06) PROCESSOR BOARDS ( \(92 \times 87 \mathrm{~mm}\) ) with gold plated contacts and all component

Please add VAT @ \(15 \%\) ts and all components
Price \(£ 9.00+\) VAT

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

All kits are carriage fre
INTEGREX LTD.
Prease send SAE For complete lists and specifications
Portwood Industrial Estate, Church Gresley Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432 Telex 377106

\section*{S-2020TA STEREO TUNER / AMPLIFIER KIT}

\section*{SOLID MAHOGANY CABINET}

A high-quality push-button
FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.


Brief Spec. Amplifier Low field Toroidal transformer, Mag; input, Tape In/Out facility (for noise reduction unit, etc.), THD less than \(0.1 \%\) at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF,
INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range \({ }^{\text {In }}\) NELSON-JONES MK. 2 STEREO FM TUNER KIT Price: E69.95 + vAT. NELSON-JONES MK. I STEREO FM TUNER KIT A very high performance tuner with dual,
gate MosFTR RF and Mixer front end,
triple gang varicap tuning, and dual cer-grate Mose gat RF and Mixer front end,
tripic filter /dual IC If amp. amp.


Brief Spac. Tuning range \(88-104 \mathrm{MHz}\). 20 dB mono quieting @ \(0.75 \mu \mathrm{~V}\).
Image rejection - 70 dB . IF rejection - 85 dB . THD typically \(0.4 \%\). II stabiilized PSU and LED tuning indicators. Push-butuan tuning and AFC
unit. Choice of either mono or stereo with a choice of stereo decoders. Compare this spec. with tuners costing twice the price.


Sens. 30dB S/N mono @ \(1.2 \mu \mathrm{~V}\)
THD typically 0.3\%
Tuning range \(88-104 \mathrm{MHz}\)
LED sig. strength and stereo indicator
STEREO MODULE TUNER KIT
A low-cost Stereo Tuner tased ori the 3302 FET PF A low-cost Stereo Tuner based on the 3302 FET RF
module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning


S-2020A AMPLIFIER KIT Developed in our laboratories from the highly successful: "TEXAN design. PC mounting potentiometers, witches, sockets and fuses are used for ease of assembly and to minimize wiring

Typ Spec. \(24+24 \mathrm{~W}\) r.m.s. into 8 -ohm load at less than \(0.1 \%\) THD. Mag. PU input S/N 60 dB . Radio input \(\mathrm{S} / \mathrm{N}\) 2dB. Headphone output. Tape \(\ln /\) Out facility (for nóise reduction unit, etc.). Toroidal mains transformer.

BASIC NELSON-JONES TUNER KIT \(£ 15.70\) + VAT
BASIC MODULE TUNER KIT (stereo) \(£ 18.50\) + VAT
BASIC MODULE TUNER KIT (stereo) \(£ 18.50\) + VAT PUSH-BUTTON PORTUS-HAYWOOD PHASE-LOCKED STEREO DECODER KIT
ww - 033 FOR FURTHER DETAILS
.00 + VAT \(\mathbf{8 8 . 8 0}+\) VAT

West Hyde have the greatest range of instrument cases





WIRELESS WORLD, NOVEMBER 1979


IT'S FREE!


























\section*{}















Carrige all units EA an.'



\section*{CHILTMEAD LTD}

NORWOOD ROAD, READING TELEPHONE NO. READING 669656
(2nd turning left past Reading Technical College in King's Road then first right - look on right for door with "Spoked Wheel")



KELSEY K102M TRANSFORMERLESS KELSEY K102M TRANSFORMERLESS
BALANCED LINE MICROPHONE AMPLIFIERS


KELSEY ACOUSTICS LTD 28 POWIS TERRACE, LONDON W11. TEL: \(01-7271046\)


\section*{For any queries on production contact John Gibbon}

Or Tony Fayers on 01. 261. 8353

RADIO SHACK LTD for DRAKE


Ham Bands with \(1.5-30 \mathrm{MHz}\) receive with builtin 150 MHz frequency counter plus option of \(\mathrm{O}-1 . \mathrm{L}\)
transceiving application \(1.8-30 \mathrm{MHZ}\)

\section*{RADIO SHACK LTD}

For Communic
Trio testgear.



DRAKE \(\pm\) SALES \(*\) SERVICE
RADIO SHACK LTD
188 BROADHURST GARDENS, LONDON NWG 3AY




\section*{A new book from} Newnes-Butterworths
Audio Equipment Tests
Gerdon J. King
* Describes more than 100 proven tests on
* Describes more than 100 proven test
* Separate chapters on the testing of each primary unit including f.m. tuner, amplifier, tape deck, record deck and loudspeaker. Additional chapters on tape and listening tests
* Gives a valuable insight into the meaning of specifications and test results quoted in books and magazines
\(1979 \quad 168\) pages \(\quad\) £6.50 US \(\$ 14.75\)
Already published
The Audio Handbook
Gordon J. King
Reprinted 1978 \(\qquad\) \(£ 6.90\)
US \(\$ 15.75\)


Newnes-Butterworths Borough Green, Sevenoaks, Kent TN15 8PH
Tel: (0732) 880567 Tel: (0732) 884567
Butterworths have companies in Australia, Canada, New
Zealand, South Africa and the USA, where local prices Zealand
apply.


\section*{COMPUTER THE LATEST}
"State of the Art" addition to WERSI
range of kits or send \(£ 1\) for our 104-page full colour catalogue and supporting literature. Visit our showroom to see the fabulous


\section*{SOUND}

AURA SOUNDS
14-15 Royal Oak Centre
Brighton Road, Purley, Surrey
Tel. 01-688 9733
and
17 Upper Charter Arcade Barnsley, Yorks

WIRELESS WORLD, NOVEMBER 1979

STRUMECH ENGINEERING ELECTRONICS DEVELOPMENTS

\section*{\(\star \star \star\) BUSINESS \(\star \star \star\) EDUCATION \(\star \star \star\)} \(\star \star \star\) RESEARCH \(\star \star \star\)
32K-56K RAM - DUAL MINI DISKS \({ }^{56 K}\) RAM-DUAL \(8^{\prime \prime}\) DISKS-10MgDISK
 prices from \(£ 1500-£ 2500\)
NEW-FORTRAN £80

seed system 12
prices from £4500-£12000

Suppliers of equipment to: Leading Universities, H.M. Government, Hospitals, Schools, Colleges and Small Business
SEED - STRUMECH - PORTLAND HSE. - COPPICE SIDE - BROWNHILLS WALSALL

WW-110 FOR FURTHER DETAILS


\section*{Appointments}

\section*{Advertisements accepted Up to 12 noon Friday, issue, subject to space being \\ issue,
available.}

DISPLAYED APPOINTMENTS VACANT: 100.00 per single col. centimetre ( min .3 cm ). LINE advertisements (run on): \(£ 1.50\) per line, minimum three lines.
BOX NUMBERS: 70 p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Neil McDonnell on \(01-2618508\)
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T

\section*{Electronics.}

The Chelmer Institute of abilities for employment as an or the Services, and have at Higher Education(Chelmsford), electronic technical engineer in least an appropriate ONC, OND in conjunctionwiththeManpower a wide variety of functions such or City and Guilds technical Services Commission, Training as development, diagnostictesting, certificate.
Opportunities Scheme (TOPS) commissioning orinstallation of Earn as you learn. Tuition is are running a 48 week full-time electronicequipmentand systems. free. TOPS tax-free weekly course startinginJanuary 1980, leading to the Higher National Certificate in Electrical and Electronic Engineering.
What do you learn? The cour signal generation, transmission, one to take up training
processing and display,
It is intended to cover the
knowledge and practical

Name
Address

VIDEO ENGINEER
A Video Engineer is required for our
Television Division. The work will include the maintenance of CCTV equipment and the installation of new video systems. Experience of CCTV equipment is essential.
Write in confidence to: R.G. Gold (Television Division). Samuelson Film Service \({ }^{3}\) Ltd., 03/315 Cricklewood Broadway ondon NW2 6PQ.

\section*{23877}

\section*{} Our existing national organisation is being expanded to include a chain of Prestel
Pubbic Accest terminal and we need an experienced and ambitious engineer to
he responsibt for the tiald This exploitation of the new Postst oftice initiative will create opportunities for a
person with management potential and the ability to motivate people and get
 techniquesial negotiale not less than \(£ 5,500\) with Cortina 1600 Estate and the
Starting salary Starting sal
benefits of \(j\)

is based on an electronic systems a TOPS Course in the last three Further information: send approach with particular years and are between jobs or coupon to: Mr. John Powell, emphasis on electronic data and prepared to leave their present Manpower Services Commission,

> xperience in electrical or Road, Southend-on-Sea.
electronic engineering in industry Tel: Southend 613134.

Telephone
06/C/65 (9749)

\section*{TOPS \\ Viewdata / Prestel Field Co-ordinator (Engineer) \\ (London Based)} ectronic equipmentandsystems. free. TOPS tax-free weekly
Would itsuityou?Thecourse allowances are payable during Woulditsuityou?Thecourse allowances are payable during
opentomen and women aged 25 training. Travelling and/orlodging is open to men and women aged 25 training.Travelling and/or lodging
ar over, who have been away
allowances may also be payable \(\begin{array}{ll}\text { or over, who have been away } & \text { allowances may also be pay } \\ \text { from full-time education for a } & \text { in approved circumstances. }\end{array}\) from full-time education for a
Manpower Services Commission, Training Services Division,

\section*{INVEST DESIGN, TEST, Q.A., FIELD SERVICE, MANAGEMENT, SALES, ETC.}

Take advantage of the best opportunities being offered in the Electronics Industry from amongst over 3,000 ranging from computers to communications. numerous sacancies, many of which are not advertised requirements will be matched against our clients and no approaches will be made to existing employers or to any other companies you care to specify. Please So don't delay - act now to give yourself the besplicants. So don't delay - act now to give yourself the best chance of finding the perfect job.
If you wish to discuss any aspect of the Electronics job market, you are welcome to phone any time. Please
ask for Brian Cornwell.

\section*{N YOUR}

FUTURE

NAME:


EDUCATION:
Secondary School Qualifications:
College or University Qualification
Any Professional Membership:



Please indicate any companies you do not wish us to contact.

WIRELESS WORLD, NOVEMBER 1979


AMPEX
Ampex Corporation, a
data recording technology, has been designated the official
supplier of video recording and magnetic tape products to the supplier of video recording
1980 Moscow Olympics.
Ampex Broadcast Systems Group, whose operation is based in
Reading, England, requires a television engineer/technician Reading, England, requires a television engineer, echnician
with a minimum of three years practical experience in the
broadcast television industry to train as a

\section*{SYSTEMS PROPOSAL ENGINEER}

This position offers the prospect of expanding commercial
sales in an international market with a major broadcasting sales in an international market with a major broadcasting
equipment system supplier. International travel can be exequipmen
pected.
The successful applicant will be a self-motivated engineer capable of applying systems engineering knowledge to the
design of television studios and mobile units to customers design of televirent
requirements.
An excel
offered.
Apply.for application form to Joan Feaver, Ampex Great
Britain Limited, Acre Road, Reading Berks. Telephone Britain Limited, Acre Road, Reading, Berks. Telephon
85200 or call direct to Bryan Freer on Reading 864211 . 973

THORN
elecrinomic ENGINEERS.

At Thorn Consumer Electronics we are expanding our
Engineering Department to cater for the increasingly At horn Consumer Electronics we are expan
Engineering Department to cater for the inc
diverse uses we plan for the television screen. Applications, male or female, are invited from qualified
Electronic Engineers with or without actual experience in Electronic Engineers with or without actual experience in
the consumer electronics field. The work involves a wide verient of proiectrs and will appeal to engineers who wish
to apply their abilities to exciting new projects in the foreto apply their abilities
front of technology.
Salaries are competitive, coupled with excellent working
conditions.
Please apply in writing to The Personnel Manager (EE / WW
THORN CONSUMERELECTRONICS LTD.
Great Cambridge Road, Enfield, Middlesex EN1 1UL.
\begin{tabular}{l} 
Great Cambridge Road, Enfield, Middlesex EN1 UL, \\
\hline 197961 \\
\hline
\end{tabular}

\section*{DesignEngineer}

\section*{Miniature Transformers}

Marconi Space and Defence Systems in Portsmouth design, develop and manufacture a wide range of electronics systems or use in satellites, and military comm

To be involved in the design and manufacture of miniature ransformers, you should preferably have a relevant degree or minimum of HNC and at least 3 years' experience in this specialised field of work. Ex-Service personnel who have
been involved with transformers would be welcome. Knowledge of DEF Standard requirements would be an advantage.
Please telephone or write, quoting ref: \(\mathrm{P} / 122\) for an application form to: Jack Burnie, Marconi Space and Defence The Airport, Portsmouth. Tel: Portsmouth (0705) 699414.

\section*{Marconi} Space \& Defence Systems (Portsmouth)

\section*{More choice...more challenge}

The IBA is committed to a demanding programme of work for many years ahead; particularly now with th
introduction of Channel Four and the expansion of Independent Local Radio. Planning, Building and Commissioning new Transmitting Stations for Television and Local Radio is a complex and
challenging task and a large one too-over 500 new stations to b be brought into operational service between
now and 19831 And beyond 1983? Many more now and 1983! And beyond 1983? Many more station and worthwhile career
In the following areas there are opportunities for engineers (male or female) qualified to Degree/HND/ qualified graduates with an interest in broadcast engineering.
Telemetry and Automation
Overall system design, application of microprocessors
mini computers and software techniques equipment mini computers and software techniques, equipment
specification, installation and commissioning participation in contract and project management. Aerials
Design
Design and specification, acceptance and commissioning of Aerial Systems, high and low power filters, channel combining and
for UHF, VHF, and MF services.
Transmitters-Television and Radi
ansmitter system planning, specification, participation in contract and project management,
liaison with manufacturers, equipment acceptance and evaluation, installation and commissioning.
Power
Planning
Planning and design of electrical installations, contract management and negotiations with Public
Service Area Planning
Participation in planning studies, evaluation
and testing of transmitting station and testing of transmitting station sites
undertaking field strength surveys to establish the extent of service achieved. Network Planning
Provision of sound network circuits linking studio and transmitter involving progressing and
acceptance testing of Post Office circuits and Pling acceptance esting of Post Off
private microwave links.
Engineering Information Service Communicating with professional engineers and the public on all
aspects of broadcast engineering. Quality Control
Ensuring that technical standards are maintained throughout ITV measurements throughout thar This involves periodic visits to programme'company

Research and Development
Covering a wide range of projects including entirely
new and exciting broadcast systems based unon new and exciting broadcast systems based upon
digital techniques; current projects include Digital Video Tape Recerding . Advanced R.F. Equipment \(\cdot\) Adaptive Aerials \(\cdot\) Data Broadcasting
Digital Audio Satellite Broadcasting • Digital Video Transmission.
All of these posts are based near Winchester although a good deal of travel hroughout the UK is involved in Depending on the post, qualifications and experience the commencing salary, normally between \(£ 6,000\) and £7,000, could be in excess of this (salary rates are
currently under negotiation for 1st Iuly 1979). currently under negotiation for 1st July 1979).
Generous re-location expenses will be paid wher appropriate.
There's a whole lot more we are wanting to tell you so why not complete the coupon and send without delay
( \(n o\) Stamp Required) for our information ( no Stamp Required) for our information package
\(\Gamma_{\text {To: The }} \frac{\text { Personnel Officer, Independent }}{}-\) - -
To: The Personnel Officer, Independent Broadcasting Authority, Crawley Court. (FREE POST) Wincheste
SO21 2BR
From: Name
Address:


Areas of Interest:
BLOCK LET
L BLOCK LETAERS PLEASE

Appointments...

\section*{datran}

\section*{Customer Service} Technician

We require an experienced technician in our Customer Service Department. Prime responsibility will be fault-finding on - and - precision DVMs which we supply worldwide.
service work is also envisaged - sometimes abroad.

Excellent working conditions in our new purpose-built premises a
Norwich Airport, good long term career prospects and a starting salary range of \(£ 3,500\) to \(£ 5,700\)
Experience with modern analogue and digital circuitry essential, preferably in instrumentation, with microproceessor
experience an asset. Formal qualifications desirable but secondary to demonstrable ability.

Contact David Marsh on Norwich 404824 extension 38 or write giving details of previous experience to Datron Electronics Ltd., Hurricane Way, Norwich Airport Estate

We require a
Television Engineer We are based in Buckinghamshire and operate a broadcast quality
colour mobile unit and studio equipped with Link hand-held and coluor momeras, Cintel Mark III telecine, VPR I recorders and a wide
studio camer
range of ther facilities. range of other facilities
An experienced television engineer is now required for operation
and maintenance work with our small team producing training and maintenance work with our small team producing
programmes for the Services at base and on location.
You should have worked on professional colour equipment and some raining could be provided, where necessary. Good starting salary. Assisted travel allowance when applicabie. F
candeen. Four weeks annual leave. Pleasant rural environment.
Pension and Life Assurance Scheme
For further information telephone or write to:
Personnel Officer,
The Services Kinema Corporation,
Chafont Grove, Narcot Lanè én,
Gerrards Cross , Bucks. SL9
Gerrards Cross, Bucks. SL9 8TN.
Tel: Chalfont St. Giles 4461 Ext. 221.
K-C \(\qquad\)

\section*{Lecturer Grade II/ Senior Lecturer}

IN ELECTRICAL/ ELECTRONIC ENGINEERING ( \(£ 4470-\varepsilon 7701\) (Bar)-: 88253 Candidites should preferably possess teaching and/or industrial
Cxperiese Candidies should preterabiy possess teaching and
experience. Research experiene and a orntinuing
repearch work are essential requirements for the post. Further details and form of application available from The
Assistant Diroctor and Chief Administrative officer, Trent Asoistant Diroctor and chief Adiminstrait
Polytochnic, Burton Stroeet, Notingham. Applications to be returned as soon as possible.

PQLYTECHNIC
NOTTINGHAM

\section*{ELECTRONIC}

SERVICE ENGINEERS LONDON - BRISTOL - MANCHESTER - GLASGOW Our Company specialises in both sales and servicing of Discotheque Sound and Lighting equipment. We currenty have vacancies for engineers who have had previous ex-
perience of either Hifi, Studio, PA or similar equipment. perience of either HiFl, studio. PA or simile.
Excellent salary plus quarterly bonus and P.P.P.
Roger Squire's Parnet Rradiding Es
Herts. EN5 5 Sat
HA. Herts. ENS 5SA
Telephone: \(01-4411919\)

\section*{Circuit Designers}


\section*{any idea what this circuit does?}

Either way, if you're interested, we'd like you to contact us. We'll send you by return, a package of information to study at your leisure, which will tell
 you about us, and how you can develop your career with us.

We have vacancies for: Computer Peripheral Circuit Designers, Switched Mode Power Supply Designers, Analogue Test Gear Designers.


\section*{Appointments ...}

WIRELESS WORLD, NOVEMBER 1979

\section*{ELECTRONICS EXPERIENCE?}

\section*{Looking for a new career challenge?}

Join Marconi Communication System and you could find yourself working on
some of the most advanced electronic equipment aroun
We currently require additional Installa-
tion and Test Engineers and Technicians, to work \(T V\) broadcasting equipment and
and
systems.

Installation
Engineers \&
Technicians
These positions offer the challenge and
variety of work abroad. We have a Continuing requirement for Engineers and pecijects, but at the moment we
specifically want people to work on overseas contracts for TV and sound
broadcasting transmitters and broad band broadcasting trans
microwave systems

\section*{MARCONI COMMUNICATION}

You could be spending anything from a
few weeks to six months abroad on permanent staff status, working as member of a team enjoying excellent
overseas allowances. A current driving overseas allowances.
icence is essential.
Test Engineers \& Technicians Work on highly complex digital and
analogue systems, using the very latest analogue syster
test equipment.
You restequil be involved in testing, fault-
You wil
finding and rectification at all stages of finding and rectification at all stages of
production through to testing entire systems prior to commissioning. Your
work can lead to the ironing out of work can lead to the ironing out of
manufacturing faults and the initiation of design changes.
Applicants for Applicants for. all posts should have
several years'
experience, in the maintenance and repair of electronic equipment, and be qualified to City \&
Guilds final, Full Tech. Cert., HND, HNC, a Degree in an Electronics discipline or H.M. Forces equivalent.
To find out tore about the work,
to conditions, salaries and benefits, contact
Roy Humphries without delay, either by
telephone on Chelmstord (0245) 353221 , Roy Humphries without delay, either by
telephone on Chelmsford (0245) 353221,
or by writing to him at Marconi Communication Systems

Electronic
TO £4800 p/a Test Engineers

We manufacture and market audio noise reduction equipment which is used by major ecording companies, recording studios and broadcasting authorities throughout the orld and have enjoyed successful growth since incorporation in 1968
The increased demand for our equipment in the recording and cinema industries has necessitated the recruitment of experienced test engineers
If you have practical knowledge and experience of electronic testing, think you can est, calibrate and troubleshoot our sophisticated equipment and enjoy the challenge
DODOlby DODolby London SW9 9AP
Telephone 01-720 111
RESEARCH TECHNICIAN

\section*{(GRADE 5}

Avacancy exists for a research tech
niciain for an initial period of 3 vears
 within the Department of fhysicic. The work will covera a wide varirity ot ot
interesting and challenging tasks

 of the dutirs will be concerned with
the preparaion of equipment tor use
there and the analysis of dat there and the analysis of data
otatined from tin which miro.
processors are playing an incoesing part. Oualifications. or experiencee
should bo ot i. . or equivent
sandard a current full driving licence
 weeks. on scale \(£ 3700-£ 4320\) p.a.


\section*{Application
perienced \\ \(\underset{\text { (graduates or equivalent) }}{\text { ELECTRONS }}\) \\ to participate in development and
research projects within the Depart
 Measurement of muscle function
Onoong acaivies in which he/sh
would be expected to play a rola
 jects. A knowledge of torgue an
velocity transducers would be a
vin dyantage. \\ The salary range for this appointment
is on the Technical Officers scale and is \\ Applications should be made to Mr Smith, Assistant Personnel OHficer,
Hammersmith Hositat, Du Cane
Rooad London W12 OHS.
(9766)}

UNIVERSITY OF SURREY
OPARTMENT OF MUSIC technician grade ia

 \begin{tabular}{l} 
sutfand studen \\
demonstraions \\
\hline
\end{tabular}


位


Test Systems Engineers

Your prospects will take on anew outlook at Lowestoft


Lowestoft : a pleasant seaside town of some character, with a busy fishing quarter and narrow lanes running down to the beach Close to the extensive leisure and recreational facilities offered
by Oulton Broad, and the Suffolk Wild Life and Country Park, with housing offering really excellent value for mone
So might run the guide book entry, but for skilled test gcation of the Manufacturing Division of Pye Ltd a is also th ocation of the Manufacturing Division of Pye Ltd., a member of
We're currently looking for additional men and women with sound knowledge of television systems and measuremen ef special ist test equipment for use within the production facility. The work is extremely varied, covering monochrome and colou eceivers, teletext and viewdata systems, and remote contro units for the UK and European markets.
As well as the splendid location, these positions offer attractiv salaries and a first-class range of benefits including removal If you're qualified to
ooking for a now way of life, eree leval or equivalent and are Personnol Officor, PPe Lttd., Manufacturing Division, Oulton
Broad, Lowestoft. (0502) 62222 .
(1) 2 Pye Limited \begin{tabular}{l} 
Manufacturing Division
\end{tabular}


WE'VE COME A LONG WAY IN
50 YEARS

and expect to continue making significant technological advances in the next 50 Our group's interests are wide ranging, and ations, including computers, flight simulators, marine radio, satellite navigation and all aspects of television from receiver design and manufacture to cable systems and the supply
of complete TV studios and outside broadcast vehicles.
Our Post Design Service on TV receivers offers technical assistance to our factories and rental companies throughout the UK, aimed at securing the best return on the huge investment in over 1 million operational television receivers. We require additional engineers for this important section, who are able to
autonomously and seeing their projects through to completion.
Formal qualifications in electronic engineering would be an asset, but most importantly we are looking for men and women
with sound technical experience in some wish fault investigation, safety investigations and approvals to \(\operatorname{BS} 415\), component evaluations and receiver quality assurance and evaluation
Career opportunities within this large and successful group are excellent, offering you the possibility of eventually designing a new generation of colour TVs or entering an allied field. You can expect an attractive salary, in line with your experience,
together with generous benefits and relocation assistance to the Chessington area of Surrey, ideally situated for both London
and the South Coast.

REDIFFUSION
Mr J . Sinclair,
Rediffusion Consumer Electronics Limited, Fullers Way Sth., Chessington, Surrey KT', 1 HJ
Telephone No. \(01-3975411\)

Appointments
WIRELESS WORLD, NOVEMBER 1979

\section*{Test Development Engineer}

Our Test Projects Section has an opening for a Test Development E
job he/she will be developing practical production test methods in this
,r our broad job he/she will be developing practical production test methods range of integrated circuits.
The work covers evaluating test methods with the designers and producing test hardware and software, through to the production of efficient test facilities for use on sophisticated computer-controlled test equipment. This requires interfacing
with the production, QA and circuit design functions of our business and thus with the production, QA and circuit design functions of our business and the of
offers a unique opportunity for those who wish to broaden their knowledge of electronics.
Applicants must have a minimum qualification of HNC plus a practical engineering background.
Write or phone for an application form to Shirley Cave, Resourcing Officer,
Plessey Semiconductors Limited, Cheney Manor, Swindon, Wilts. SN2 2QW. Plessey Semiconducto
Tel: Swindon 36251 .
(3) PLESSEY
\begin{tabular}{c}
\(\substack{\text { CHELSEA COLLEGE } \\
\text { Univorit of of ondon } \\
\text { ELECTRONICS WORKSHOP }}\) \\
\hline
\end{tabular} DEPUTY SUPERVISOR ELECTRONICS TECHNICIAN ENGIMEER






SAUDI ARABIA We require a Qualified Eloc tronic Enginear /Tochnician
Some knowledge of colour TV Some Vnowedge of colour
and \(V C R\) servicing. Excellen
remuneration - preferably and \(\begin{aligned} & \text { remune } \\ & \text { single. }\end{aligned}\). Single Apoly to the Manager
Unitod Electronic Company United Electronic Company
PO Box 7520 CR15873 Ryiadh
Saudi Arabia


\section*{ELECTRONICS ENGINEER}

\section*{(WITH A FLAIR FOR INSTRUCTION]}

\section*{WEST LONDON}
c. \(£ 6,000\)

You will be capable of designing and building circuits for training purposes in microelectronics courses. Only by designing and constructing their own circuits should apply.
The successful applicant will also have the opportunity to develop his / her own knowledge of microprocessors in conjunction with other members of the team
Interested?
The please contact: Box No. WW9747.

\section*{The University of Sussex Electronics Technician}

Grade 3 , in the Social Psychology Laboratory, starting as soon as
possible. The vacancy in a small growing department is for a technician possibe. The vacancy in a small growing department is tor a technician
with experience of transistor circuits. capabel of developing and
constructing simple apasparatus and preferably interested in C.C.T.V. Salary scale. \(£ 3122-£ 3553\) per annum (under review, to be increased
from 1.4.80 to at least \(£ 3313-£ 3770\) per annum). Further particulars and application form, returnable as soon as office of Arts \& Social Studies, University of Sussex, Falmer, Brighton N1 90 N (606755, ext 1050 Miss Prat)

\section*{RadioOfficers SeaSick?}

If you've seen quite enough of the sea, and are thinking now of a shore-based job that suits your qualifications, the
Post Office Maritime Service can offer you interesting work, job security, good pay, plus the pleasure of enioying all the comforts of home where you appreciate them most - at home
Vacancies exist at several coast stations for qualified Radio
Officers to carry out ariety of Officers to carry out a variety of duties that range from radio telephone operating. And for those with ambition, the prospects of promotion to senior management are excellent. You must have a United Kingdom Maritime Radio
Communication Operator's General Certificate or First Class
Certificate of proficiency in Radio-telegraphy or an
equivalent certificate issued by a Commonweat th Administration or the Irish Republic. Preferably you should Theme sea-going experience.
years starting pay at 25 or over will be about \(£ 4450\); after between service this figure rises to around \(£ 5750\). (If you are approximately \(£ 3500\) and \(£ 4050\) ). Overtime is between approximately \(£ 3500\) and \(£ 4050\) ). Overtime is additional, least 4 weeks 'holiday a year.
For further information, please telephone Andree Trionfi on Freefone 2281 or write to her at the following address: ETE Maritime Radio Services Division (WW), T. Martins-1., Room 643 , Union House,


The Government Communications Centre at Milton o contribute to the Centre's growing reputation. Our work is often novel, always challenging and requiring a high evel of dedication and application to the task. The fields career development and experience in VHF, HF general and digital circuitry, design and development.
Minimum qualification needed is HNC.
per annum depending on
are situated close to Mi
We are sith many modern entertainmeenes, a fast growing sporting facilities. The area is crossed bsopping and ravelling routes and reasonably priced housing is Please apply for an application form to the Recruitme Hanslo Mans Hanse, Milton Keyns, M19

MakeThe Centre your next stop

\section*{Appointments}

WIRELESS WORLD，NOVEMBER 1979

\section*{THE WELDING INSTITUTE \\ POWER SUPPLY AND DIGITAL} ELECTRONIC DESIGN ENGINEERS A department of Control Engineering has been set up in The
Welding Institute Research Laboratory，the largest such Waboratory in the western world，to deal specifically with the overall field of control in welding systems．This will cover both
low and high power electrical／electronic engineering，com－ low and high power electrical／electronic engineering，com－
puter control（including dedicated microprocessors）as well as puter control（incluading dedicated micropro Two vacancies exist for qualified engineers to work in modern well－equipped laboratories in a pleasant rural setting． One post will involve the design and development of power
supplies up to 30 kilowatts in output rating，for which an supplest in heavy electronits and oxperience in the application of thyristors are essential requirements．
The other post will involve the design of digital measuring and control equipment，and of peripheral interfaces within micro－
computers．Previous experience with microprocessors would computers．Previous experience with microprocessors would
be useful，but not so important as a solid background of digital hardware design．
The Institute operates a 35 hour week，with four weeks＇annual Teave，negotiable progressive salary，excellint pension and life
assurance scheme，subsidised restaurant and sports and social assurance schem
club facilities．
Application forms from：The Personnel Officer，The Wel－ ding Institute，Abington Hall，Abington，Cambridge CB1
6AL．

\section*{Audio \(+{ }^{4}\) Video VTR ENGINEERS}
c．\(£ 10,000\) We require VTR Engineers，preferably with broadcast experience，to
senvice and maintain RCA and Ampex 2it quad machines．\(A\) working
knowledge of the Rank Cintel Mark III Telecine equipment would be an knowledge of
advantage．
Our other excellent in－house facilities include Marconi DICE standards
converter TBC T ，and a multitude of Helican Scan machines，leading to converter， TBCS and a multitucie of
an interesting and varied workload．
If this sounds like you please ring Mr．C．J．Carroll and have an informal
chat about the work，the salary and the holidays etc．，on \(01-5807161\) chat abou
or write：


\section*{ELECTRONICS REPAIR TECHNICIANS}

Kingsbury c．\(£ 5500\)
What do you know about digital equipment？Enough to repair microprocessor－based systems，disc drives，VDU＇s，PCB＇s and SSU＇s？If so，we have some excellent opportunities for you at Kingsbury．
We＇re Linotype－Paul，designers and manufacturers of sophisti－ cated electronic hardware and software for the printing and pubishing industries．
HNC／ONC or equivalent whomen，aged \(25+\) ，qualified to opportunities．We＇re offering a salary negotiable around \(£ 5500\) and excellent benefits，plus ample overtime，a subsidised canteen， and up to 26 days holiday ayear
For full details，ring or write to The Personnel Department， Linotype－Paul Ltd．，Kingsbury Road，London NW98UT． Tel：01－2050123．

Linotype－Paul
 RADIO TELEPHONE ENGINEERS
Field and Bench positions
VHF and UHF
equipment
 Plus－Company cars are suppliod
for Field Service Engineors．Wo

 3285344.

Communica
\({ }_{30}\) Boundary hoad，London，NWI

POSSUM
Electronic Engineers and
Electronic Hobbyists


The company tuture expansions ofter
excelen coreer prospeacs to to the engineer
ond the the chand


TOP JOBS IN ELECTRONICS Posts in Computers，Medical，
Comms，etc．ONC to Ph．D．Free Phone or write BUREAUTECH
AGY \(\mathbf{4 6}\) SELVAGE LANE \begin{tabular}{l} 
AGY， \\
LONON，NW7． \(01-959\) \\
\hline
\end{tabular}

\section*{SpaceTechnology}

\section*{South Coast Engineering Opportunities}

Among the international leaders in space technology， we offer a wide range of career prospects for experienced engineers and enthusiastic graduates alike immediate and rewarding opportunities for men or wome in the following disciplines：
Satellite Systems
Communication Systems
Microwave Systems
Control and Propulsion Systems Mechanical Design
Satellite Assembly Integration and Test Thermal Design
EMC

Quality Assurance
Digital Analogue and Circuit Systems
If you wish to know more of the openings，facilities and training we can offer and would be interested in working in this favoured location，please telephone Jack Burnie for an application form，quoting ref．P116，on
ortsmouth 699414.
Marconi Space \＆Defence Systems Limited，Bro
Portsmouth．

．

Marconi Space \＆Defence

Systems（rortsemoub）

\section*{D）工凡O日 \\ Technical Lid}

VIDEO AND CCTV ENGINEERS
Dixons Technical are importers and dis－
tributors of a wide range of broadcast， tributors of a wide range of broadcast，
video and CCTV equipment．Due to oxpansion they are seoking：
ASSISTANT SERVICE MANAGER wihh general video experience
VIDEO ENGINEER
with experience of VCR and basic colour
TVequipment based at Croydon or Soho Square．
Atractive salary and the usual large company benefits．

Apply to John Street，General Manager， 68－70 WIXDImill Road，Croydon，Surrey．

Tel：01－689 6021

\section*{0000 \\ VISION ENGINEER}

CTVC require a vision engineer for their broadcast standard TV studios in Bushey．Applicants should have operational and maintenance experience pre－ ferably with a broadcast or facilities company．Please phone or write for an applica－ tion form to Carol Moxon， CTVC，Hillside，Merry Hill Road，Watford WD2 1DR． Tel：01－950 4426.

Appointments

\section*{WE NEED EVEN MORE ELECTRONICS ENGINEERS AND TECHNICIANS CIRCA £7500}

Our continued expansion as Britain's largest component supplier means we require enginapplications and quality approval
An unparalleled opportunity to gain experience in these fields and develop your potential with a company committed to exciting new developments.

\section*{nterested?}

Telephone to write to our Chief Engineer, Bob Rambridge,
R. Rambridge
 Chief Engineer

PO Box 52
37/45 City Road London EC1P 1 HX Tel. 01-253 1222

Kiribati (formerly Gilbert Islands)

\section*{Technical OfficerTelecommunications (Radio)}

Up to \(£ 7,816\) a year plus allowances
If you hold a City and Guilds Telecommunications Technician's
Cetificate or equivalent with radio speciais ation and have Cyoutiole or equivilent with radio speciailisation, and have
Cexpifieience in the installation and maintenance of \(M F\). HF and
ent experience in the installation and maintenance ग. MMF,
VHF equipment, you are invited to apply for this post. You would be responsible for the installation, maintenance and
repair of telecommunicaions equipment throughout the islands repair of telecommunications equipment throughout the
and for the superision and practical training of local staft. Salary includes a substantial tax-free allowance paid under Britain's overseas aid programme. Basic salary attracts \(25 \%\) gratuity Benefits include free passages, generous paid leave, chidren's
holiday vist passages and education allowances, ouftitallowance, holiday visit passagese sand deducation allowances, outfit allowance
subsidised housing, appoitment grant and interestree car loan.


Crown Agenis a
The Crown Agents for OVersea Governments a
Administrations,
Rerruitment
IV ivision,

\section*{OVERSEAS} ELECTRONICS TECHNICIANS


Whist applicants should preferably possess a HNC/ONC/Service Traing in Electronics they should also have a good understanaing al
general engineering principles and be able to work with minimal general. ens.
superision.

Staftengaged will undergo a period of equipment training on one of our
UK. Stations and at the Decca College in Devon prior to going overseas.

These appointments are superannuated and there are good prospects for
promotion. Commencing salaries are competitive and are commensurate promotion. Commencing salaries are competitive and are commensurate
with age and experience Whilst overseas we supply food, accommodation and medical attention free of charge, together with regular paid trips tion and medical at
to the U.K. for leav.

Providing you are unmarried, medically fit, in the age group \(25-35\) and
hold a valid U.K. driving licence please send a resume of your career to the hold a valid U.K. driving licence plealy
Overseas Operations Department at:
The Decca Navigator Company Limited
Wymondley House
Little Wymondley
Litile WHIN
HITCHIN
Herts
SG4.7JB.

\section*{EXPERIENCED TEST ENGINEER WISHING TO PROGRESS \\ Opportunity to ioin a London based company producing sound mixing consoles for live media,
recording and broadcast application \\ The individual most suitable for this responsible and interesting situation would be aged \(25-35\), with an H.N.C. (or similiar)
qualification and several years post-qualification experience in \\ fault diagnosis with products designed to a high- \\ Ability to formulate test procedures, to appraise quality standards and to act on own initiative within an informal and enthusiastic team is essential. \\ In return we offer excellent remuneration, good conditions,
and opportunity to gain basic design experience in this field. \\ Please phone Chas Brooke on 3887060 or 3877679 for an plication form and company information, or write to him giving resumé of career to date. \\ milans \\ Audio Systems Ltd.
\(54-56\) Stanhope St., London NWI 3EX.}

\section*{Technical Officers}
-RADIO/RADAR

 including ACR 430, PLAN \(17-18\) ILS. ECKO VDF, VHF/UFF AM/FM
Iransmiters and erecivers. Experience of Plessey ILS maintenance would be a -
National Joint Council Conditions of Employment apply, subiect to the Norwich
City
Counci's local variations and agreements. Grade \(T .555 .220\) to 55.547 per


Norrwich, situated amidst the Broads of Norfolk, surrounded by areas of

For further dotails and an application form write to the Dopury Aiporn
Manager, Norwich Airport, Fifers Lano, Norwich NR6
GJA. The Sonior rechnical Officer can be contacted on Norwich 411923 for informal discussion about the nature of the work involved.

HE SMELLS GOOD!!
How of on we have director or a chief eng words a technic instinct that tells us this is the person for a key job. After nearly
twenty years in the business human instinct reaches its peak twenty years in the business human instinct reaches its peak but human memory begins to fail - so we have employed
Einstein - a Compucolor II small business computer - for information retrieval and an ex-lecturer to interpret the information we feed to him.
Exceptional opportunity:-High flier for high technology
company engaged in designing processing systems which involve the very latest multiproces sor and communication techniques. To \(£ 10,000+\) car Surrey/ Sussex border.
rdware software development enginmicroprocessor experience. Knowledge of Z80 or RCA 1802 an advantage. To \(£ 8,500\) - Wilts.
Young design
ques associated engineer to work on phase-lock-loop technifrequency synthesisers \begin{tabular}{l} 
frequency synthesisers. Good theoretical background related \\
to communications essential. Berks - to \\
\hline
\end{tabular} Sales liaison engineers for communication sy and data scramblers. Background in radio communication and ability to negotiate with UK and foreign Governmen
officials. Opportunity for overseas travel. West country - to officials
\(£ 6,500\)
Sales ongineers for progressive young company marketing microprocessors, costand and Midlands. Basic salary \(£ 6,500\) Young engineers with experience or wishing to gain ex perience in microprocessor hardware/software - join a new
team engineering -the ultimate? - in test equipment. High
俍 team engineering - the ultimate? - in test equipment. High
level and low level languages employed. London - to \(£ 7,000\) Charles Airey Associates

Professional Careers in Electronics


All the others are measured by us... At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have number of interesting opportunities in our Design,
Production and Service Departments and we can offer Production and Service Departments and we can offer
attractive salaries, productivity bonus, pension and sick altrac schemes together with help over relocation. If you are interest
following details:-


Present job
\(\square\)

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOS
AL4 OBR. Tel: St Albans 59292

\section*{Marconi} instruments

\section*{LABORATORY TECHNICLANS \\ BBC Engineering Designs Department
requires technicians in Central London requires technicans in Central London
laboratories to assist engineers with the development, construction and testing of
dound and television broadcasting sound and tel
equipment. \\ COMPUTER MAINTENANCE ENGINEERS}

Vacancies exist both for people with experience of this type of work and for
trainees. Excellent opportunities for promotion
LABORATORY TECHNICIANS Successful candidates will probably be in
their 20's and have a keen interest in, and a minimum of two years' practical
experience of electronics. They will have experience of electronics. They will hav
at least ONC or City \& Guilds Part 2 or
equivalent Sar equivalent. Salary according to
qualifications and experience the range qualifications and experience in the range
\(£ 4185-£ 5170\) rising to \(£ 6295\). JUNIOR LABORATORY TECHNICIANS
Successful candidates will probably be
aged 18-20 and have a keen interest in aged \(18-20\) and have a keen interest in
electronics. They will either be recently eectronics. They will either be recently
qualified to ONC or City \& Guilds Part 2
(T4) standard or have sarted (T4) standard or have started the final
year of such a course. Salary according to year of such a course. Salaryaccording to
qualifications in the range \(£ 3800-£ 4100\).
On the job training On the job trainining given. Flexible hours Requests for application form to
The Engineering Recruitment BBC, Broadcasting House, London WIA 1AA.Quoting Reference Numbe
79. \(2415 / \mathrm{WW}\) and enclosing a self addressed envelope at least \(9^{\prime \prime} \times 4\)," or telephone \(01-5804468\) Ext. 2675. Closing
date for completed application forms is date for completed applica
.14 days after publication.

\section*{BBG}
\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}


\section*{THE COMPANY:}

Burroughs is an: international computer company with
world-wide activities. The high technology of its products world-wide activities. The high technolog. of its products
designed and manuactured at Cumbernauld demands the
extensive use of computers as shown below
THE JOB:
sstallation and maintenance of a wide range of computer
: 3 large scale (B68000) computer systems and peripherals
4 medium scale (B 1800) computer systems and peripherals
- 24 small scale (B80) computer systems and peripherals

QUALIFICATIONS:
hasis will be on abillty.
Salary will
alary will
PERSONAL DEVELOPMENT
All necossary training on mainframes and peripheral
evolopment.
FOR FURTHER INFORMATION
Write of phone: The Recruitment Manage
Burroughs, Cumbermauld G68 OBN
surroughs, Cumbernalald G68 0BN
Telephone: \(023-6735457\)


Burroughs


GREATER GLASGOW PASSENGER TRANSPORT EXECUTIVE

\section*{4}

\section*{BUS AND UNDERGROUND DIVISION}

\section*{Engineering}

\section*{Technician}
(ELECTRICAL) GRADE TECHNICALC/D (Salary Scale £4,080-£5,220)

A vacancy has arisen for an Engineering Techn
cian to work in routine maintenance and fault finding on radio telephone mobile and base
station equipment, cash safes, burglar alarm installations and supervisory contro
in electrical distribution sub stations.
The post is within the Technical Group of the
Engineering Department and, with advent of new equipment for signals, automatic crrein control.
station surveillance and ticketing equipment station surveillance and ticketing equipment
Under the Undergound Railway Modernisation
Project, the scope of operations should increase Project, the sc
considerably.
Applicants must be able and willing to undergo
training and develop expertise in all stated fields, an will as exercisise immediate capability in radio
Experience of at least
xperience of at least five years in electronic
oubleshooting is required. Minimum qualification is City and Guilds Fuill Technological Cer-
fificate in Telecommunications, but equivalent qualifications in another relevant field would be
acceptable.
Salary will be according to experience and
qualifications. Applications stating age, qualifications, otc.,
should be forwarded to the Personnei
Manager, Greater Glasgow Passenger Manager, Greater Glas gow Passenger
Transport Executive, 46 Bath Strest, Glas-
gow, G2 1 HN , within ten days of this adverTransport
gow, G21.
tisement.

Director of Industrial Relations \(\begin{gathered}\text { J. COYLE } \\ (973)\end{gathered}\)

LINIVERSTY OF SURREY EPARTMENT OF LIMGUSTIC AND
INTERNATONAL STUDIES

\section*{TECHNICIAN GRADE 5} £3,474- E4,05 A vacancy exists in this rapidly ex-
panding department. The successtul
 part in the day yod doy running of the
Departments Language Laboratories.
Technical experience with Audio and
 Video tape recording apparatus and
associade eutioment experieco of
film, side or film strip overhead projection, and reprographic equipment
are essential skills. Educational requirements, City and
Giuld
certificate.
Rio and TV TV Technicians

 or telepho
452 . lelephon


ELECTRICAL/ELECTRONIC DESIG
RAUGHTSPERSONS
required




\section*{RADIO OFFICERS}

If your trade or training involves radio operating, you
qualify to be considered for a Radio Officer post with th Composite Signals Organisation.
A number of vacancies will be available in 1980/81 for Auitably qualified candidates to be appointed as Traine adio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly
On successful completion of 40 weeks' specialist training
appointees move to he Radio Office Grade.
Salary Scales
Trainee Radio Officer
Age \(19 £ 3271\)
Age \(20 £ 3382\)
Age \(21 £ 3485\)
Age 22 £3611
Age \(23 £ 3685\)
Age \(24 £ 376\)
hen by 5 annual increments to \(£ 6981\) in day elements.

Radio Officer Age \(19 £ 3961\) Age \(20 £ 4107\) Age 21 £4243 Age 22 £4359 Age \(23 £ 4571\)
Age \(24 £ 4854\) Age \(25+£ 5166\)

For further details telephone Cheltenham
21491 Ext. 2269, or write to the 21491
below.
\begin{tabular}{l} 
Recruitment Office \\
Governent Communications Headquarters \\
\hline Oakley, Priors Road, Cheltenham GL52 5AJ (9993)
\end{tabular}

SULTANATE OF OMAN

\section*{ARMY APPOINTMENTS}

Applications are invited from suitably qualified personnel who
have erecently served in the Royal Signals or in similar Branches
in the R.N. or R.A. (including those who are due to complete
 full-time service shortly) to fill the following con
ments in the Signals Regiment of the Oman Army

YEOMAN OF SIGNALS
(WOI)
Aplicants must have served as such in the British Forces and
qualified by a formal course of training.
TERMINAL EQUIPMENT TECHNICIANS
(Sgts.)
Applicants must be qualified and experienced in the maintenance of telephone exchanges, crypto equipment and tele-
printers. A knowledge of cross-bar exchange techniques would printers. A knowe.
radio technicians
(Sgts.).
Applicants must have attended and passed a recoenised Radio Technician's course to at least Class II standard and be fully
qualified toundertake the enstallation and repair of vehicle and
manpack \(H F\) and VHF radio equipment. manpack \(H F\) and VHF radio equipment.
TELECOMMUNICATIONS MECHANICS (Sgts.)
Applicants must be experienced and qualified in the installation Applicants must be experienced and qualified in the installation
and maintenance of multicore cables and local line networks
associated with exchange and airfield com munications, and be associated with exchange and airfield communications, and
prepared to supervise and train local tradesmen.
These are uniformed contract appointments of three years' These are uniformed contract appointments of three years
duration, unaccompanied (although short family visists to Oman are possible). Age limits - 45 . Annual emoluments commence
at the equivalent of 7250 (WO1) and \(\in 6000\) (Sgt.) at current
 emoluments received, all tax free. Normal air-conditioned Mess,
accommodation and services are provided free. and 20 days
paid leave is granted threep times annually with air passages paid.
Forf dull details, write giving brief details of qualifications and
experience and quoting the appropriate reference, to: AIRWORK SERVICES LIMITED Bournemouth (Hurn) Airport
Christchurch, Dorset BH23

\section*{(A)}

Airwork Services Lrdo (\%)


Gallenkamp, a leading company in the scientific equipment field,
and a member of the Fisons Group, require an

\section*{Electronics Development Engineer}

Have you ever wished to follow through your design to actual
Salary c. £4K. 9 - EC2
 Elearroric and Dosign Engineers in our expanding Development
Dept. dosigning new scientific equipment and improving existing


 The job is is located in a modern well-quipped laboratory in our
head oftice building near to Moorgate and Liver


 Technico House, Christopher Street, London EC2P 2EF.
Gallenhamp
ARTICLES FOR SALE
TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY

 APACITORS. Siver mica, Polystyrene, Polvester, Disc Ceramics, Convergence Pots, Slider Pots, Electrolytic condensors, Can Types,

 4450749 Al at Knockout prices. Come and pay us a visit. Telepho
 \\ \section*{} \\ \section*{}
\begin{tabular}{|c|}
\hline \multirow[t]{17}{*}{} \\
\hline \\
\hline
\end{tabular}


WIRELESS WORLD NOVEMBER 1979

\begin{tabular}{|c|}
\hline ARTICLES FOR \\
\hline ELECTRONIC TEST EQUIPMENT \\
\hline SALES PURCHASES
AND SERVICE \\
\hline  \\
\hline  \\
\hline  \\
\hline  \\
\hline Mremen \({ }_{\text {M }}\) \\
\hline  \\
\hline  \\
\hline Marconi TF 2091 1/2902 Noise System \({ }^{\text {c30 }}\) \\
\hline  \\
\hline Lab Gear Coiour bar Gen Go. E95 \\
\hline (eater \\
\hline  \\
\hline Ascil Keriboards . . . . . . . \(\leqslant 20\) \\
\hline  \\
\hline
\end{tabular}

\section*{DUTCHGATE LTD. Pyle Hill, Winchoster Rd.} Fair Oak, Hampshire
Fair Oak 5252

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
WIN . . . WIN . . . WIN \\
A professional 16/4 Mixer and 4-track Tape Recorder worth over \(£ 2,000\) Dept. Ww1o EUROPRIZE COMPETITIONS LTI. Home Farm, Northall, Dunstable, Beds.
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}



\section*{Here's why you} should buy an I.C.E. instead of just any multimeter enthusiasts, hobbyists, service engineers. * World-wide proven reliability * 20K/volt sensitivity * Large mirror scale meter high accuracy * Fully protected against overload. *Large range of inexpensive accessories. * 12 month warranty, backed by a full after
sales service at E.B.Sole U.K. Distributors sales service at E.B. Send for full colour leaflet and prices on whole range including accessories. 1 피 ELECTRONIC 1 리 = BROKERS LIMITED 49.53 Pancras Road, London NW1 20 B.
Tel: 01-837 7781 . Telex: 298694.

INDEX TO ADVERTISERS
Appointments Vacant Advertisements appear on pages 140-158
\begin{tabular}{|c|c|c|}
\hline Acoustical Mfg Co. Ltd \({ }^{\text {Page }}\) & GEC Semiconductors : .................... 68 & OISon Electronics \\
\hline Acoustical Mfg. Co. Ltd. .................. \({ }_{38}^{2}\) &  & Olson Electronics \\
\hline Airamos \(_{\text {Afecrals }}^{\text {a }}\).................................. 34 & Greenwood Electronics & \\
\hline \({ }_{\text {Amtron/Omenex }}\) & Harris Electronics (London) Ltd ........... 26, 36 & Petalect Electronic Servicing \\
\hline Anders Electronics Ltd -................... \({ }^{16}\) & Electronics ......................... \({ }_{136}^{115}\) & \\
\hline Antex & Henry's Radio (............................... 139 & \\
\hline Aspen Electronics Ltd ............................... \({ }^{37}\) & H.L.-Audio .................................. 33 & Pye Unicom
Proops Bros. \\
\hline & Electr & tum Ele \\
\hline & Industrial Tape Applications .............14. 1107 & \\
\hline Barrie Electronics Ltd ..................... 137 & Integrex Ltd. ....................124, 125 & Radio Components Specialists .............. \({ }^{121}\) \\
\hline & Intel Electronic Comps. Lt & Radio Shack ........................... 137 \\
\hline  & Interface Quartz Devices Ltd .............. \({ }_{40}{ }_{41} 22\) & Ralfe, P. ............................ 122 \\
\hline Bi-Pak Semiconductors Ltd ................ \({ }^{135}\) &  & R.C.S. Electronics \\
\hline  & \({ }_{\text {ITP Electronics }}\) 79 \({ }^{\text {Intere }}\). & \({ }_{\text {Research Communications }}^{\text {R.S. Valves }}\)................... \({ }^{128}\) \\
\hline British Nat. Radio \& Elec. & & \\
\hline & ciate & Sainsons (Electron \\
\hline Cambridge Learning ¢ ................... 10, 11 & K.A.C. Electronic Investme & Sandwell Plant Ltd ...................... 108 \\
\hline Carston Electronics Ltd ................ 12, 13, & Keithley Insts. & Science of Cambrid \\
\hline Catronics & Kelsey Acoustics & Scopex Instruments Ltd \(\ldots\)..f............ \({ }_{10}^{13}\) \\
\hline \({ }_{\text {cheraran }}\) Circards No. 5 ................................ 31 & Kirkham Amplifier K........................ 19 & Scotr J. Eleece. Sng. \\
\hline Codespeed Elec. .......................... 126 & Kramer \& Co. .......................... 118 & SME Ltd \\
\hline Colomor (Electronics) Ltd. ................. \({ }^{136}\) & & Southern Electron \\
\hline Computer Weekly & Lan & Special Products L \\
\hline Coutant Electronics \({ }^{\text {cta }}\) & Lascara Electron & Strumech Eng Ltd \\
\hline Continental Specialities \(\begin{gathered}\text { Craft Tools } \& \text { Co } \\ \text { coliel }\end{gathered}\) & Leevers-Rich Equip. Lt & Strutt Elece \& Mech' Engrs. Ltd ................... \({ }^{36}\) \\
\hline Crimson Elektrik ......................... 26 & Lowe Electronics Ltd ....................... \({ }^{\text {chen }}\) & Surrey Electronics Ltd \\
\hline & & y El \\
\hline Danavox (G.B.) Ltd & .... 109 & \\
\hline \({ }_{\text {Datong }}^{\text {Display Electronics }}\)........................ \(114{ }^{115}\) & Marshall, A. \& Sons (London) Ltd .......... \({ }_{31}^{118}\) & Technomaticictd \(L\). .................... \({ }^{132}\) \\
\hline (isplay Electronics ......................... 115 &  &  \\
\hline Drake Transformers ..................... 112 & & \\
\hline & Microdigital, & Toolrange Ltd \\
\hline one Radio Ltd ..................... 14 & & Trident Exhibitions \\
\hline  & Millbank Electronics & Valadio \\
\hline Electro-Tecth Comps. Ltd ................. \({ }^{120}\) & & Vero Electron \\
\hline Elvins/Dalston ......................... 138 &  & Viewdata Exhn. \\
\hline & & Walden Precision \\
\hline Faircest t Eng, & Nascom Microcomputers
Newbear Comp. Store & West Hyde Developments Ltd \\
\hline Field Tech .atio............... 112 & Newnes-Butterworth .................... \({ }^{138}\) & Wilmot Breden ......................... 24 \\
\hline Future Film Developments & Newtronics & Z. \& I. Aero Services Ltd. ............... 38, 12 \\
\hline \begin{tabular}{l}
OVERSEAS ADVERTISEMENT AGENTS: \\
France \& Belgian: Norbert Hellin, 50 Rue de Chemin Veat, \\
F-92100, Boulogne, Paris
\end{tabular} & Japan: Mr. Inatskiki, Trade Media - IBPA (Japan), B. 212, Telephone: (03) 585 50 581 & \multirow[t]{2}{*}{} \\
\hline Hungary: Mrs Edit Bajusz, Hungexpo Advertising Agency. Budapest XIV, Varosliget. & \multirow[t]{3}{*}{\begin{tabular}{l}
United States of America: Ray Barnes, IPC Business Press 205 East 42 nd Street, New York. N
(212) 6895961 -Telex: 421710 . \\
Mr Jack Farley Jnr., The Farley Co.. Suite 1584, 35 Eas Wacker Drive, Chicago, Illinois 60601 - Telephone: (312) Mr Victor A. Jauch, Elmatex International, P.O. \(80 \times 34607\) Los Angeles, Calif. 900
\end{tabular}} & \\
\hline & &  \\
\hline Staly: Sig C. Epis, Etas-Kompass, S.p.a.
Mantegna 6, 20154 Milan. & & 2- Telephone: (416) 3642269. \\
\hline
\end{tabular}

Wireless World, November 1979

```


[^0]: wW - 031 FOR FURTHER DETAILS

